Citation: Ren Peixing, Qi Lin, Fang Zhuoyue, Wu Tianshu, Gao Yameng, Shen Song, Song Jinyan, Wang Lijing, Li Wei. Copper-Catalyzed Sulfeno-/Seleno-amination of β, γ-Unsaturated Hydrazones with Disulfides/Diselenides toward Sulfenylated/Selenylated Pyrazolines[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1776-1786. doi: 10.6023/cjoc201901006 shu

Copper-Catalyzed Sulfeno-/Seleno-amination of β, γ-Unsaturated Hydrazones with Disulfides/Diselenides toward Sulfenylated/Selenylated Pyrazolines

  • Corresponding author: Qi Lin, 129qilin@163.com Wang Lijing, wanglj@hbu.edu.cn Li Wei, liweihebeilab.163.com
  • Received Date: 5 January 2019
    Revised Date: 26 January 2019
    Available Online: 22 June 2019

    Fund Project: the Science Foundation for Key Program of Hebei Province B2016201031Project supported by the National Natural Science Foundation of China (No. 21702043), the Science Foundation for Key Program of Hebei Province (No. B2016201031), the Science Foundation for Youths of Hebei Province (No. B2017201041), and the "Revolution of Scientific Research Results into Teaching Resources" of Hebei University (No. KYZJX18140)the "Revolution of Scientific Research Results into Teaching Resources" of Hebei University KYZJX18140the National Natural Science Foundation of China 21702043the Science Foundation for Youths of Hebei Province B2017201041

Figures(2)

  • A convenient copper-catalyzed sulfeno-/seleno-amination of β, γ-unsaturated hydrazones with disulfides/diselenides via radical pathway has been developed. The protocol enables efficient access to various sulfenylated/selenylated pyrazolines under mild reaction conditions.
  • 加载中
    1. [1]

      (a) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, John Wiley and Sons, Chichester, U.K., 1996.
      (b) Fontecave, M.; Ollagnierde-Choudens, S.; Mulliez, E. Chem. Rev. 2003, 103, 2149.

    2. [2]

      (a) Yu, L.; Dennis, E. A. J. Am. Chem. Soc. 1992, 114, 8757.
      (b) Wang, X.; Shaaban, K. A.; Elshahawi, S. I.; Ponomareva, L. V.; Sunkara, M.; Zhang, Y.; Copley, G. C.; Hower, J. C.; Morris, A. J.; Kharel, M. K.; Thorson, J. S. J. Nat. Prod. 2013, 76, 1441.
      (c) Singh, S. B.; Zink, D. L.; Dorso, K.; Motyl, M.; Salazar, O.; Basilio, A.; Vicente, F.; Byrne, K. M.; Ha, S.; Genilloud, O. J. Nat. Prod. 2009, 72, 345.

    3. [3]

      (a) Lauterbach, C.; Fabian, J. Eur. J. Inorg. Chem. 1999, 1999, 1995.
      (b) Hope, E. G.; Levason, W. Coord. Chem. Rev. 1993, 122, 109.
      (c) Clemenson, P. I. Coord. Chem. Rev. 1990, 106, 171.
      (d) Baumann, R. P.; Ishiguro, K.; Penketh, P. G.; Shyam, K.; Zhu, R.; Sartorelli, A. C. Biochem. Pharmacol. 2011, 81, 1201.

    4. [4]

      (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (b) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
      (c) Li, H.; Wang, Z.; Deng, W. Chin. J. Org. Chem. 2016, 36, 2419 (in Chinese).
      (李红亮, 王正林, 邓卫平, 有机化学, 2016, 36, 2419.)
      (d) Zhang, B.; Kang, Y.; Shi, R. Chin. J. Org. Chem. 2016, 36, 1814 (in Chinese).
      (张变香, 亢永强, 史瑞雪, 有机化学, 2016, 36, 1814.)
      (e) Wang, D.; Zhang, R.; Lin, S.; Deng, R.; Yan, Z. Chin. J. Org. Chem. 2016, 36, 2757 (in Chinese).
      (王丁意, 张荣兴, 林森, 邓瑞红, 严兆华, 有机化学, 2016, 36, 2757.)
      (f) Wang, J.; Wu, J.; Tian, W. Chin. J. Chem. 2015, 33, 632.
      (g) Hu, D.; Bai, F.; Liu, Y.; Wan, J.-P. Chin. J. Chem. 2016, 34, 1053.
      (h) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744 (in Chinese).
      (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
      (i) Zheng, G.; Zhao, J.; Li, Z.; Zhang, Q.; Sun, J.; Sun, H.; Zhang, Q. Chem. Eur. J. 2016, 22, 3513.

    5. [5]

      (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
      (b) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
      (c) Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.-Eur. J. 2009, 15, 7808.
      (d) Beckwith, A. L. J.; Wagner, R. D. J. Org. Chem. 1981, 46, 3638.
      (e) Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.; Hammarstrom, S. J. Am. Chem. Soc. 1980, 102, 1436.
      (f) Pironti, V.; Colonna, S. Green Chem. 2005, 7, 43.
      (g) Chen, M.; Wang, L.-J.; Li, W. Chin. J. Org. Chem. 2017, 37, 1173 (in Chinese).
      (陈漫漫, 王力竞, 李玮, 有机化学, 2017, 37, 1173.)

    6. [6]

      (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
      (b) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Chem. Commun. 2017, 53, 3450.

    7. [7]

      (a) Zheng, Y.; He, Y.; Rong, G.; Zhang, X.; Weng, Y.; Dong, K.; Xu, X.; Mao, J. Org. Lett. 2015, 17, 5444.
      (b) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
      (c) Wang, D.; Yan, Z.; Xie, Q.; Zhang, R.; Lin, S.; Wang, Y. Org. Biomol. Chem. 2017, 15, 1998.

    8. [8]

      (a) Denmark, S. E.; Collins, W. R.; Cullen, M. D. J. Am. Chem. Soc. 2009, 131, 3490.
      (b) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H. Nat. Chem. 2014, 6, 1056.
      (c) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc. 2014, 136, 8915.
      (d) Alom, N.-E.; Rina, Y. A.; Li, W. Org. Lett. 2017, 19, 6204.
      (e) Alom, N.-E.; Wu, F.; Li, W. Org. Lett. 2017, 19, 930.
      (f) Ni, Y.; Zuo, H.; Li, Y.; Wu, Y.; Zhong, F. Org. Lett. 2018, 20, 4350−4353.
      (g) Liu, T.; Tian, J.; Gao, W.-C.; Chang, H.-H.; Liu, Q.; Li, X.; Wei, W.-L. Org. Biomol. Chem. 2017, 15, 5983.

    9. [9]

      (a) Lee, M.; Brockway, O.; Dandavati, A.; Tzou, S.; Sjoholm, R.; Satam, V.; Westbrook, C.; Mooberry, S. L.; Zeller, M.; Babu, B.; Lee, M. Eur. J. Med. Chem. 2011, 46, 3099.
      (b) Lombardino, J. G.; Otterness, I. G. J. Med. Chem. 1981, 24, 830.
      (c) Alex, J. M.; Kumar, R. J. J. Enzyme Inhib. Med. Chem. 2014, 29, 427.
      (d) Dardic, D.; Lauro, G.; Bifulco, G.; Laboudie, P.; Sakhaii, P.; Bauer, A.; Vilcinskas, A.; Hammann, P. E.; Plaza, A. J. Org. Chem. 2017, 82, 6032.

    10. [10]

      (a) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem., Int. Ed. 2014, 53, 3158.
      (b) Zhu, M.-K.; Chen, Y.-C.; Loh, T.-P. Chem.-Eur. J. 2013, 19, 5250.
      (c) Zhu, X.; Chiba, S. Org. Biomol. Chem. 2014, 12, 4567.
      (d) Zhao, Q.-Q.; Chen, J.; Yan, D.-M.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2017, 19, 3620.
      (e) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.
      (f) Yang, M.-N.; Yan, D.-M.; Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2017, 19, 5208.

    11. [11]

      (a) Chen, M.; Wang, L.-J.; Ren, P.-X.; Hou, X.-Y.; Fang, Z.; Han, M.-N.; Li, W. Org. Lett. 2018, 20, 510.
      (b) Chen, M.; Qi, L.; Chen, J.-M.; Ren, P.-X.; Du, J.; Wang, L.-J.; Li, W. Org. Biomol. Chem. 2018, 16, 5136.
      (c) Wang, L.-J.; Ren, P.-X.; Qi, L.; Chen, M.; Lu, Y.-L.; Zhao, J.-Y.; Liu, R.; Chen, J.-M.; Li, W. Org. Lett. 2018, 20, 4411.

    12. [12]

      Yu, J.-M.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.  doi: 10.1039/C7OB02892J

    13. [13]

      (a) Jinbo, Y.; Kondo, H.; Taguchi, M.; Sakamoto, F.; Tsukamoto, G. J. Org. Chem. 1994, 59, 6057.
      (b) Creary, X.; Losch, A. Org. Lett. 2008, 10, 4975.
      (c) Xu, R. S.; Wan, J. P.; Mao, H.; Pan, Y. J. J. Am. Chem. Soc. 2010, 132, 15531.
      (d) Ge, W. L.; Wei, Y. Y. Green Chem. 2012, 14, 2066.

    14. [14]

      Kabalka, G.-W.; Reddy, M.-S.; Yao, M.-L. Tetrahedron Lett. 2009, 50, 7340.  doi: 10.1016/j.tetlet.2009.10.061

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    4. [4]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    5. [5]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    6. [6]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

Metrics
  • PDF Downloads(2)
  • Abstract views(721)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return