Citation: Xu Lulu, Ye Qianwen, Cheng Dongping, Li Xiaonian, Xu Xiaoliang. Regioselective Ring-Opening Reaction of Cyclopropene Carboxylate Promoted by N-Bromosuccinimide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2645-2649. doi: 10.6023/cjoc201812029 shu

Regioselective Ring-Opening Reaction of Cyclopropene Carboxylate Promoted by N-Bromosuccinimide

  • Corresponding author: Cheng Dongping, chengdp@zjut.edu.cn Li Xiaonian, xnli@zjut.edu.cn; xuxiaoliang@zjut.edu.cn Xu Xiaoliang, xuxiaoliang@zjut.edu.cn
  • Received Date: 16 December 2018
    Revised Date: 28 March 2019
    Available Online: 11 September 2019

    Fund Project: the Zhejiang Provincial Natural Science Foundation of China LY18B020018the National Science Foundation of China 21602197Project supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LY18B020018, LY15B020004) and the National Science Foundation of China (No. 21602197)the Zhejiang Provincial Natural Science Foundation of China LY15B020004

Figures(1)

  • The cyclopropene compound contains an intra carbon-carbon double bond structure, which leads to distinctive active chemical reactivity due to the large ring tension. In this paper, the N-bromosuccinimide-promoted regioselective ring-opening of cyclopropene dicarboxylates to give functionalized α, β-unsaturated carboxylic acid ester compounds was studied. The reaction conditions are mild and the operation is simple.
  • 加载中
    1. [1]

      (a) Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. Y. Angew. Chem. Int. Ed. 2008, 47, 7350.
      (b) Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro, M.; Ando, K.; Hashimoto, S. Angew. Chem., Int. Ed. 2011, 50, 6803.
      (c) Chen, J.; Ma, S. Chem. Asian J. 2010, 5, 2415.
      (d) Song, C.; Ju, L.; Wang, M.; Liu, P.; Zhang, Y.; Wang, J.; Xu, Z. Chem. Eur. J. 2013, 19, 3584.
      (e) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
      (f) Archambeau, A.; Miege, F.; Meyer, C.; Cossy, J. Acc. Chem. Res. 2015, 48, 1021.

    2. [2]

      (a) Chuprakov, S.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 3714.
      (b) Paswa, A. Acc. Chem. Res. 1979, 12, 310.
      (c) Chen, J.; Ni, S.; Ma, S. Synlett 2011, 931.
      (d) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546.
      (e) Zhu, P. L.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52, 7245.
      (f) Song, C.; Sun, D.; Peng, X.; Bai, J.; Zhang, R.; Hou, S.; Wang, J.; Xu, Z. Chem. Commun. 2013, 49, 9167.
      (g) Padwa, A. Acc. Chem. Res. 1979, 12, 310.

    3. [3]

      (a) Welch, J. G.; Magid, R. M. J. Am. Chem. Soc. 1967, 89, 5300.
      (b) Kubota, K.; Mori, S.; Nakamura, E. J. Am. Chem. Soc. 1998, 120, 13334.
      (c) Liao, L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322.
      (d) Liao, L.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M. Tetrahedron. 2004, 60, 1803.
      (e) Miege, F.; Meyer, J.; Cossy, J. Org. Lett. 2010, 12, 4144.

    4. [4]

      (a) Ma, S.; Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003, 125, 13954.
      (b) Liu, Y.; Ma, S. Org. Lett. 2012, 14, 720.
      (c) Liu, Y.; Yu, Q.; Ma, S. Eur. J. Org. Chem. 2013, 15, 3033.
      (d) Wang, Y.; Lam, H. W. J. Org. Chem. 2009, 74, 1353.
      (e) Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. W. Angew. Chem. Int. Ed. 2008, 47, 7350.

    5. [5]

      (a) Fordyce, E. A. F.; Wang, Y.; Luebbers, T.; Lam, H. W. Chem. Commun. 2008, 1124.
      (b) Maksic, M. E.; Golic, M.; Tolic, L. P. J. Org. Chem. 1995, 489, 35.
      (c) Liao, L.; Yan, N.; Fox, J. M. Org. Lett. 2004, 6, 4937.

    6. [6]

      (a) Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y. L.; Zhang, J. L. Angew. Chem. Int. Ed. 2018, 57, 15787.
      (b) Fulton, J. L.; Horwitz, M. A.; Bruske, E. L.; Johnson, J. S. J. Org. Chem. 2018, 83, 3385.
      (c) Horwitz, M. A.; Fulton, J. L.; Johnson, J. S. Org. Lett. 2017, 19, 5783.

    7. [7]

      Ye, Q. W.; Ye, H. Q.; Cheng, D. P.; Li, X. N.; Xu, X. L. Tetrahedron Lett. 2018, 59, 2546.  doi: 10.1016/j.tetlet.2018.05.047

    8. [8]

      (a) Ye, H. Q.; Ye, Q. W.; Cheng, D. P.; Li, X. N.; Xu, X. L. Tetrahedron Lett. 2018, 59, 2046.
      (b) Dai, X. J.; Cheng, D. P.; Guan, B. C.; Mao, W. J.; Xu, X. L.; Li, X. N. J. Org. Chem. 2014, 79, 7212.
      (c) Ye, Q. W.; Xu, X. L.; Cheng, D. P.; Guan, B. C.; Ye, H. F.; Li, X. N. ARKIVOC 2017, 314.
      (d) Chen, J.; Cen, J.; Xu, X. L.; Li, X. N. Catal. Sci. Technol. 2016, 6, 349.

    9. [9]

      (a) Liu, K.; Jiang, H. J.; Li, Na.; Li, H.; Wang, J.; Zhang, Z. Z.; Yu, J. J. Org. Chem. 2018, 83, 6815.
      (b) Huang, P.; Peng, X.; Hu, D.; Liao, H.; Tang, S.; Liu, L. Org. Biomol. Chem. 2017, 15, 9622.
      (c) Wang, H.; Huang, L.; Cao, X.; Liang, D.; Peng, A. Y. Org. Biomol. Chem. 2017, 15, 7396.
      (d) Wang, D.; Yan, Z.; Xie, Q.; Zhang, R.; Lin, S.; Wang, Y. Org. Biomol. Chem. 2017, 15, 1998.
      (e) Sathe, P. A.; Karpe, A. S, ; Parab, A. A.; Parade, B. S.; Vadagaonkar, K. S.; Chaskar, A. C. Tetrahedron Lett. 2018, 59, 2820.
      (f) Qian, M.; Qin, B.; Yuan, H. Y.; Li, W. L.; Zhang, J. P. J. Comput. Chem. 2018, 39, 2324.
      (g) Pardeshi, S. D.; Sathe, P. A.; Wadagaonkar, K. S.; Chaskar, A. C. Adv. Synth. Catal. 2017, 359, 4217。
      (h) Shinde, M. H.; Kshirsagar, U. A. Green Chem. 2016, 18, 1455.

    10. [10]

      (a) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
      (b) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014, 136, 4141.
      (c) Chen, S. Y.; Feng, B. Y.; Zheng, X. S.; Yin, J. L.; Yang, S. P.; You, J. S. Org. Lett. 2017, 19, 2502.
      (d) Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736.

    11. [11]

      (a) Simone, F. D.; Saget, T.; Benfatti, F.; Almeida, S.; Waser, J. Chem. Eur. J. 2011, 17, 14527.
      (b) Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C. M. Chem. Commun. 2012, 48, 3133.
      (c) Pandit, R. P.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2016, 358, 3586.
      (d) Keipour, H.; Jalba, A.; Laurin, L. D.; Ollevier, T. J. Org. Chem. 2017, 82, 3000.

    12. [12]

      (a) Bobes, F. G.; Fenster, M. D. B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Adv. Synth. Catal. 2008, 350, 813.
      (b) Dange, N. S.; Robert, F.; Landais, Y. Org. Lett. 2016, 18, 6156.
      (c) Wheeler, T.; Ray, J. J. Org. Chem. 1987, 52, 4875.

  • 加载中
    1. [1]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    9. [9]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    10. [10]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    11. [11]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    16. [16]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    17. [17]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    20. [20]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

Metrics
  • PDF Downloads(4)
  • Abstract views(1068)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return