Citation: Wang Ruixianga, Lai Xiaojinga, Qiu Guanyinsheng, Liu Jinbiao. Recent Advances in Reaction-Based Excited State Intramolecular Proton Transfer (ESIPT) Fluorescence Probe[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 952-960. doi: 10.6023/cjoc201811006 shu

Recent Advances in Reaction-Based Excited State Intramolecular Proton Transfer (ESIPT) Fluorescence Probe

  • Corresponding author: Qiu Guanyinsheng, qiuguanyinsheng@mail.zjxu.edu.cn Liu Jinbiao, liujbgood@hotmail.com
  • Received Date: 5 November 2018
    Revised Date: 30 November 2018
    Available Online: 17 April 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21762018, 21772067), the Natural Science Foundation of Jiangxi Province (No. 20171BAB213008) and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technologythe Natural Science Foundation of Jiangxi Province 20171BAB213008the National Natural Science Foundation of China 21762018the National Natural Science Foundation of China 21772067

Figures(8)

  • Fluorescence detection based on excited state intramolecular proton transfer (ESIPT) using reaction-based probes has attracted considerable attention in the scientific community as they offers promising advantages, including high selectivity, high sensitivity and large Stoke shift. The representative examples of design strategies, mechanism of actions, existing challenges and future developments for reaction-based ESIPT fluorophores reported in the last ten years are reviewed.
  • 加载中
    1. [1]

      Zhang, H.-M.; Wu, Y.-C.; You, J.-Y.; Cao, L.; Ding, C.; Jiang, K.; Wang, Z.-Y. Chin. J. Org. Chem. 2016, 36, 2559 (in Chinese).
       

    2. [2]

      Xu, Q.-C.; Jin, C.; Zhu, X.-H.; Xing, G.-W. Chin. J. Org. Chem. 2014, 34, 647 (in Chinese).
       

    3. [3]

      Li, Y.-J.; Lv, Z.-Q.; Liu, M.; Xing, G.-W. Chin. J. Org. Chem. 2016, 36, 962 (in Chinese).
       

    4. [4]

      Zhang, C.; Gao, Y.-L. Chin. Ind. Eng. Prog. 2016, 35, 3288 (in Chinese).

    5. [5]

      Ooyama, Y.; Matsugasako, A.; Oka, K.; Nagano, T.; Sumomogi, M.; Komaguchi, K.; Image, I.; Harima, Y. Chem. Commun. 2011, 47, 4448.  doi: 10.1039/c1cc10470e

    6. [6]

      Liu, Y.; Han, M.; Zhang, H.-Y.; Yang, L.-X.; Jiang, W. Org. Lett. 2008, 10, 2873.  doi: 10.1021/ol801048t

    7. [7]

      Bryce, M. R. Adv. Mater. 2010, 11, 11.
       

    8. [8]

      Medintz, I. L.; Clapp, A. R.; Brunel, F. M.; Tiefenbrunn, T.; Uyeda, H. T.; Chang, E. L.; Deschamps, J. R.; Dawson, P. E.; Mattoussi, H. Nat. Mater. 2006, 5, 581.  doi: 10.1038/nmat1676

    9. [9]

      Marras, S. A.; Kramer, F. R.; Tyagi, S. Nucleic Acids Res. 2002, 30, e122.  doi: 10.1093/nar/gnf121

    10. [10]

      Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301.  doi: 10.1021/ja037088b

    11. [11]

      Berezin, M. Y.; Achilefu. S. Chem. Rev. 2010, 110, 2641.  doi: 10.1021/cr900343z

    12. [12]

      Kwon, J. E.; Park, S. Y. Adv. Mater. 2011, 23, 3615.  doi: 10.1002/adma.v23.32

    13. [13]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.  doi: 10.1039/c1cs15113d

    14. [14]

      Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.  doi: 10.1002/adma.201401356

    15. [15]

      Jiang, K.; Cao, L.; Hao, Z.-F.; Chen, M.-Y.; Chen, J.-R.; Li, X.; Xiao, P.; Chen, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2017, 37, 2221 (in Chinese).
       

    16. [16]

      Cho, D. G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647.  doi: 10.1039/b804436h

    17. [17]

      Yang, X.-F.; Qi, H.; Wang, L.; Su, Z.; Wang, G. Talanta 2009, 80, 92.  doi: 10.1016/j.talanta.2009.06.030

    18. [18]

      Bao, Y.; Liu, B.; Wang, H.; Tian, J.; Bai, R. Chem. Commun. 2011, 47, 3957.  doi: 10.1039/c1cc00034a

    19. [19]

      Goswami, S.; Das, A. K.; Manna, A.; Maity, A. K.; Fun, H. K.; Quah, C. K.; Saha, P. Tetrahedron Lett. 2014, 55, 2633.  doi: 10.1016/j.tetlet.2014.03.003

    20. [20]

      Mahapatra, A. K.; Mondal, S.; Manna, S. K.; Maiti, K.; Maji, R.; Ali, S. S.; Mandal, D.; Uddin, M. R.; Mandal, S. Supramol. Chem. 2016, 28, 693.  doi: 10.1080/10610278.2015.1122195

    21. [21]

      Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G. Angew. Chem., Int. Ed. 2010, 122. 5035.  doi: 10.1002/ange.v122:29

    22. [22]

      Dhanunjayarao, K.; Mukundam, V.; Venkatasubbaiah, K. Sens. Actuators, B 2016, 232, 175.  doi: 10.1016/j.snb.2016.03.090

    23. [23]

      Saravanan, C.; Easwaramoorthi, S.; Hsiow, C. Y.; Wang, K.; Hayashi, M.; Wang, L. Org. Lett. 2014, 16, 354.  doi: 10.1021/ol403082p

    24. [24]

      Goswami, S.; Manna, A.; Paul, S.; Das, A. K.; Aich, K.; Nandi, P. K. Chem. Commun. 2013, 49, 2912.  doi: 10.1039/c3cc39256b

    25. [25]

      Liang, C.; Jiang, S. Analyst 2017, 142, 4825.  doi: 10.1039/C7AN01479A

    26. [26]

      Geng, L.; Yang, X. F.; Zhong, Y.; Li, Z.; Li, H. Dyes Pigm. 2015. 12, 213.
       

    27. [27]

      Zhang, H.; Huang, Z.; Feng, G. Anal. Chim. Acta 2016, 920, 72.  doi: 10.1016/j.aca.2016.03.027

    28. [28]

      Goswami, S.; Manna, A.; Mondal, M.; Sarkar, D. RSC Adv. 2014, 4, 62639.  doi: 10.1039/C4RA12537A

    29. [29]

      Huang, Q.; Yang, X. F.; Li, H. Dyes Pigm. 2013, 99, 871.  doi: 10.1016/j.dyepig.2013.07.033

    30. [30]

      Liu, Y.; Feng, G. A. Org. Biomol. Chem. 2014, 12, 438.  doi: 10.1039/C3OB42052C

    31. [31]

      Huang, C.; Jia, T.; Yu, C.; Zhang, A.; Jia, N. Biosens. Bioelectron. 2015, 63, 513.  doi: 10.1016/j.bios.2014.08.005

    32. [32]

      Svechkarev, D.; Dereka, B.; Doroshenko, A. J. Phys. Chem. A 2011, 115, 4223.  doi: 10.1021/jp110974n

    33. [33]

      Santra, M.; Roy, B.; Ahn, K. H. Org. Lett. 2011, 13, 3422.  doi: 10.1021/ol2011693

    34. [34]

      Chang, I. J.; Hwang, K. S.; Chang, S. K. Dyes Pigm. 2017, 137, 69.  doi: 10.1016/j.dyepig.2016.09.058

    35. [35]

      Zhao, J.; Zhao, Y.; Xu, S.; Luo, N.; Tang, R. Inorg. Chim. Acta 2015, 438, 105.  doi: 10.1016/j.ica.2015.09.007

    36. [36]

      Yang, C.; Chen, Y.; Wu, K.; Wei, T.; Wang, J.; Zhang, S.; Han, Y. Anal. Methods 2015, 7, 3327.  doi: 10.1039/C5AY00224A

    37. [37]

      Liu, B.; Wang, H.; Wang, T.; Bao, Y.; Du, F.; Tian, J.; Li, Q.; Bai, R. Chem. Commun. 2012, 48, 2867.  doi: 10.1039/c2cc17677g

    38. [38]

      Cui, L.; Zhu, W.; Xu, Y.; Qian, X. Anal. Chim. Acta 2013, 786, 139.  doi: 10.1016/j.aca.2013.05.011

    39. [39]

      Luo, W.; Li, J.; Liu, W. Org. Biomol. Chem. 2017. 15. 5846.  doi: 10.1039/C7OB01189J

    40. [40]

      Tuo, M.; Jin, Z.; Liu, L.; Yun, H.; Zhang, Z. Chin. J. Org. Chem. 2014, 34, 1780 (in Chinese).
       

    41. [41]

      Gupta, V. K.; Mergu, N.; Singh, A. K. Sens. Actuators, B 2014, 202, 674.  doi: 10.1016/j.snb.2014.05.133

    42. [42]

      Murale, D. P.; Kim, H.; Choi, W. S.; Churchill, D. G. Org. Lett. 2013, 15, 3946.  doi: 10.1021/ol4017222

    43. [43]

      Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.  doi: 10.1021/ol4000845

    44. [44]

      Wang, L.; Zang, Q.; Chen, W.; Hao, Y.; Liu, Y. N.; Li, J. RSC Adv. 2013, 3, 8674.  doi: 10.1039/c3ra41209a

    45. [45]

      Liu, B.; Wang, J.; Zhang, G.; Bai, R.; Pang, Y. ACS Appl. Mater. Interfaces 2014, 6, 4402.  doi: 10.1021/am500102s

    46. [46]

      Liu, Y.; Yu, D.; Ding, S.; Xiao, Q.; Guo, J.; Feng, G. ACS Appl. Mater. Interfaces 2014, 6, 17543.  doi: 10.1021/am505501d

    47. [47]

      Zhang, Y.; Wang, J.-H.; Zheng, W.; Chen, T.; Tong, Q.-X.; Li, D. J. Mater. Chem. B 2014, 2, 4159.  doi: 10.1039/C4TB00190G

    48. [48]

      Goswami, S.; Manna, A.; Paul, S.; Das, A. K.; Nandi, P. K.; Maity, A. K.; Saha, P. Tetrahedron Lett. 2014, 55, 490.  doi: 10.1016/j.tetlet.2013.11.055

    49. [49]

      Kim, T. I.; Kang, H. J.; Han, G.; Chung, S. J.; Kim, Y. Chem. Commun. 2009, 5895.

    50. [50]

      Fan, C.; Luo, S.; Qi, H. Luminescence 2016, 31, 423.  doi: 10.1002/bio.v31.2

    51. [51]

      Hu, Q.; Zeng, F.; Yu, C.; Wu, S. Sens. Actuators, B 2015, 220, 720.  doi: 10.1016/j.snb.2015.05.111

    52. [52]

      Gao, M.; Hu, Q.; Feng, G.; Tang, B.-Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/C4TB00345D

    53. [53]

      Jin, X.; Sun, X.; Di, X.; Zhang, X.; Huang, H.; Liu, J.; Ji, P.; Zhu, H. Sens. Actuators, B 2016, 224, 209.  doi: 10.1016/j.snb.2015.09.072

    54. [54]

      Goswami, S.; Das, S.; Aich, K.; Pakhira, B.; Panja, S.; Mukherjee, S. K.; Sarkar, S. Org. Lett. 2013, 15, 5412.  doi: 10.1021/ol4026759

    55. [55]

      Jin, X.; Liu, C.; Wang, X., Huang, H.; Zhang, X.; Zhu, H. Sens. Actuators, B 2015, 216, 141.  doi: 10.1016/j.snb.2015.03.088

    56. [56]

      Liu, B.; Liu, Q.; Shah, M.; Wang, J.; Zhang, G.; Pang, Y. Sens. Actuators, B 2014, 202, 194.  doi: 10.1016/j.snb.2014.05.010

    57. [57]

      Ju, Z.; Shu, P.; Xie, Z.; Jiang, Y.; Tao, W. Chin. J. Org. Chem. 2019, 39, 697 (in Chinese).
       

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    12. [12]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    13. [13]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    16. [16]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    17. [17]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    18. [18]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    19. [19]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(176)
  • Abstract views(6368)
  • HTML views(2655)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return