Citation: Chen Yaqi, Gui Xin, Duan Zunbin, Zhu Lijun, Xiang Yuzhi, Xia Daohong. Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1284-1292. doi: 10.6023/cjoc201809012 shu

Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin

  • Corresponding author: Xia Daohong, xiadh@upc.edu.cn
  • Received Date: 6 September 2018
    Revised Date: 3 December 2018
    Available Online: 18 May 2019

    Fund Project: the the National Natural Science Foundation of China 21376265Project supported by the the National Natural Science Foundation of China (No. 21376265)

Figures(10)

  • Cyclodextrin is a kind of cyclic oligosaccharide which is composed of the D-pyran glucose units connected with the α-1, 4-glycosidic bond. Cyclodextrin has the rigidly tapered cavity of hydrophobic inner and hydrophilic outer. Cyclodextrin has been attracted more and more attention from scientists since it was discovered, owning to its special space cavity of hydrophilic inner and hydrophilic outer. As an important industrial catalyst, transition metal catalyst can combine with the cyclodextrin system to simultaneously exert the catalytic properties of the metal and the molecular recognition and phase transfer of cyclodextrin, which greatly improves its catalytic performance. In this paper, the transition metal catalyzed organic reactions involving cyclodextrin are reviewed, and these reactions are described in terms of the metal valence from 0 to 4. Finally, the development and foreground of these co-catalyst systems involving metal and cyclodextrin are prospected. It is expected that the catalytic system will have a wider application in the future, and a more efficient and selective catalytic system will be continuously developed.
  • 加载中
    1. [1]

      Lai, E.; Jean, M.; Shen, X. H. M. Supramolecular Chemistry:Concepts and Prospects, Peking University Press, Beijing, 2002 (in Chinese).

    2. [2]

      Xia, D. H.; Jiang, S. J.; Li, L.-L.; Xiang, Y. Z.; Zhu, L. J. Chin. J. Chem. Eng. 2016, 24, 146.  doi: 10.1016/j.cjche.2015.06.008

    3. [3]

      Tong, L. H. M. Cyclodextrin Chemistry-Basics and Applications, Science Press, Beijing, 2001 (in Chinese).

    4. [4]

      Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2011, 32, 791(in Chinese),
       

    5. [5]

      Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645.  doi: 10.1021/jacs.6b07590

    6. [6]

      Menuel, S.; Léger, B.; Addad, A.; Monflier, E.; Hapiot, F. Green Chem. 2016, 18, 5500.  doi: 10.1039/C6GC00770H

    7. [7]

      Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J.A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494.  doi: 10.1021/cr068126n

    8. [8]

      Xiao, J.; Qi, L. Nanoscale 2011, 3, 1383.  doi: 10.1039/c0nr00814a

    9. [9]

      Shanmugam, M.; Kim, K. J. Electroanal. Chem. 2016, 776, 82.  doi: 10.1016/j.jelechem.2016.06.009

    10. [10]

      Cravotto, G.; Gaudino, E. C.; Tagliapietra, S.; Carnaroglio, D.; Procopio, A. Green Proc. Synth. 2012, 1, 269.

    11. [11]

      Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.  doi: 10.1002/anie.v48:43

    12. [12]

      Dheer, D.; Rawal, R. K.; Singh, V.; Sangwan, P. L.; Das, P.; Shankar, R. Tetrahedron 2017, 73, 4295.  doi: 10.1016/j.tet.2017.05.081

    13. [13]

      Patil, R. N.; Vijay Kumar, A. ACS Omega 2017, 2, 6405.  doi: 10.1021/acsomega.7b00898

    14. [14]

      Messmer, E. Z. Phys. Chem. 1927, 126, 369.

    15. [15]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.  doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809.  doi: 10.1021/ja046382g

    17. [17]

      Hein, J. E.; Tripp, J. P.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 1.  doi: 10.1002/anie.200890275

    18. [18]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.  doi: 10.1021/jo011148j

    20. [20]

      Aprahamian, I.; Dichtel, W. R.; Ikeda, T.; Heath, J. R.; Stoddart, J. F. Org. Lett. 2007, 9, 1287.  doi: 10.1021/ol070052u

    21. [21]

      Yigit, S.; Sanyal, R.; Sanyal, A. Chem. Asian J. 2011, 6, 2648.  doi: 10.1002/asia.v6.10

    22. [22]

      Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 9285.  doi: 10.1021/ja3036543

    23. [23]

      Collinson, J.-M.; Wilton-Ely, J. D. E. T.; Diez-Gonzalez, S. Chem. Commun. 2013, 49, 11358.  doi: 10.1039/c3cc44371j

    24. [24]

      Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.  doi: 10.1039/c3ra45994b

    25. [25]

      White, J. R.; Price, G. J.; Schiffers, S.; Raithby, P. R.; Plucinski, P. K.; Frost, C. G. Tetrahedron Lett. 2010, 51, 3913.  doi: 10.1016/j.tetlet.2010.05.104

    26. [26]

      Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.; Zhu, L. Org. Lett. 2009, 11, 4954.  doi: 10.1021/ol9021113

    27. [27]

      Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.  doi: 10.1039/b904091a

    28. [28]

      Zhu, L.; Lynch, V. M.; Ansly, E. V. Tetrahedron 2004, 60, 7267.  doi: 10.1016/j.tet.2004.06.079

    29. [29]

      Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Tetrahedron 2014, 70, 9828.  doi: 10.1016/j.tet.2014.10.076

    30. [30]

      Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557.  doi: 10.1002/adsc.200303022

    31. [31]

      Sheng, S. R.; Wang, Q. Y.; Ding, Y.; Liu, X. L.; Cai, M. Z. Catal Lett. 2009, 128, 418.  doi: 10.1007/s10562-008-9767-z

    32. [32]

      Reddi, M. N. K.; Satheesh, K. B.; Anil, K. M.; Arulselvan, P.; Ibrahim, K. S.; Lasekan, O. Molecules 2012, 17, 7543.  doi: 10.3390/molecules17067543

    33. [33]

      Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. ChemInform 2010, 345, 557.
       

    34. [34]

      Dabbawala, A. A.; Sudheesh, N.; Bajaj, H. C. Dalton. Trans. 2012, 41, 2910.  doi: 10.1039/c2dt11924b

    35. [35]

      Datta, K. K. R.; Srinivasan, B.; Balaram, H.; Eswaramoorthy, M. J Chem. Sci. 2008, 120, 579.  doi: 10.1007/s12039-008-0088-y

    36. [36]

      Nie, R.; Sang, R.; Ma, X.; Zheng, Y.; Cheng, X.; Li, W.; Wu, Y. J. Catal. 2016, 344, 286.  doi: 10.1016/j.jcat.2016.09.022

    37. [37]

      Yao, Z.; Hong, S.; Zhang, W.; Liu, M.; Deng, W. Tetrahedron Lett. 2016, 57, 910.  doi: 10.1016/j.tetlet.2016.01.049

    38. [38]

      Zhang, P.; Meijide, S. J.; Driant, T.; Derat, E.; Zhang, Y.; Ménand, M. Angew. Chem. 2017, 129, 10961.  doi: 10.1002/ange.201705303

    39. [39]

      (a) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656.
      (b) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543.

    40. [40]

      Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. ChemInform 2013, 44, 2262.

    41. [41]

      Perez, A. L.; Moseguer, J. O.; Marques, P. R.; Corma, A. Angew. Chem., Int. Ed. 2013, 125, 11768.  doi: 10.1002/ange.201303188

    42. [42]

      Hoffmann, I.; Blumenröder, B.; Thumann, S. O. N.; Dommer, S.; Schatz, J. Green Chem. 2015, 17, 3844.  doi: 10.1039/C5GC00794A

    43. [43]

      Saito, N.; Taniguchi, T.; Hoshiya, N.; Shuto, S.; Arisawa, M.; Sato, Y. Green Chem. 2015, 17, 2358.  doi: 10.1039/C4GC02469A

    44. [44]

      (a) Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem. 2014, 16, 4955.
      (b) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 38, 3358.
      (c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 30, 4369.
      (d) Martin R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
      (e) Vellakkaran, M.; Andappan, M. M. S.; Kommu, N. Green Chem. 2014, 16, 2788.

    45. [45]

      Raihana, I. K.; Kasi, P. Green Chem. 2016, 18, 4791.  doi: 10.1039/C6GC90091G

    46. [46]

      Qi, M.; Tan, P. Z. Xue, F.; Malhi, H. S.; Zhang, Z. X.; Young, D. J. Rsc. Adv. 2014, 5, 3590.

    47. [47]

      Zhou, X.; Guo, X.; Jian, F.; Wei, G. ACS Omega 2018, 3, 4418.  doi: 10.1021/acsomega.8b00469

    48. [48]

      Guo, Y.; Li, J.; Zhao, F.; Lan, G.; Li, L.; Liu, Y.; Yang, R. RSC Adv. 2016, 6, 7950.  doi: 10.1039/C5RA23271F

    49. [49]

      Imran, K. R.; Pitchumani, K. ACS Sustainable Chem. Eng, 2018.

    50. [50]

      Poulos, T. L. Chem. Rev. 2014, 114, 3919.  doi: 10.1021/cr400415k

    51. [51]

      Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.  doi: 10.1039/C4CC08753D

    52. [52]

      Xu, X.; Li, C.; Tao, Z.; Pan, Y. Adv. Synth. Catal. 2015, 357, 3341.  doi: 10.1002/adsc.201500418

    53. [53]

      Wang, M. L.; Fang, G. D; Liu, P. Appl. Catal., B 2016, 188, 113.  doi: 10.1016/j.apcatb.2016.01.071

    54. [54]

      Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano. 2010, 4, 4001.  doi: 10.1021/nn100939n

    55. [55]

      Sharavath, V.; Sarkar, S.; Gandla, D.; Ghosh, S. Electrochim. Acta 2016, 210, 385.  doi: 10.1016/j.electacta.2016.05.177

    56. [56]

      Mohamed, M. A.; Shukla, A.; Sandhya, K. Y. Environ. Prog. Sustainable 2016, 35, 1283.  doi: 10.1002/ep.v35.5

    57. [57]

      Subramanian, R.; Ponnusamy, V. J. Mater. Sci.: Mater. Electron. 2016, 28, 1.

    58. [58]

      Sun, N.; Wang, T.; Liu, C. Wood. Sci. Tenol. 2016, 50, 1.  doi: 10.1007/s00226-015-0797-6

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    5. [5]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    6. [6]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    7. [7]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    13. [13]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    16. [16]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(19)
  • Abstract views(2118)
  • HTML views(539)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return