Citation: Yu Jiajia, Yang Shan, Wu Zhen, Zhu Chen. Annulation of Benzylic Alcohols with Alkynes for Rapid and Efficient Synthesis of Indenes and Spiroindenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 223-231. doi: 10.6023/cjoc201808009 shu

Annulation of Benzylic Alcohols with Alkynes for Rapid and Efficient Synthesis of Indenes and Spiroindenes

  • Corresponding author: Zhu Chen, chzhu@suda.edu.cn
  • Received Date: 10 August 2018
    Revised Date: 10 September 2018
    Available Online: 12 January 2018

    Fund Project: the National Natural Science Foundation of China 21722205Project supported by the National Natural Science Foundation of China (No. 21722205)

Figures(2)

  • As a type of important carbocyclic compounds, indenes and spiroindenes are not only widely found in natural products but extensively employed as synthetic building blocks in materials, pharmaceuticals, and asymmetric synthesis. An efficient and rapid synthesis of indenes and spiroindenes via the annulation of benzylic alcohols (or aryl-substituted cycloalkanols) with alkynes in the presence of TiCl4 or AlCl3 was desclosed. This reaction is normally completed within 30 min at room temperature and compatible with a variety of substituted alkynes. Two new C—C bonds are constructed during the reaction. Cycloalkanols such as cyclobutanol, cyclohexanol, cycloheptanol, cyclooctanol, and cyclododecanol are suitable substrates to afford a set of valuable spiroindenes. This method is featured with simple operation, short reaction time, and mild reaction conditions.
  • 加载中
    1. [1]

      (a) Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
      (b) Shin, S.; Son, J. Y.; Choi, C.; Kim, S.; Lee, P. H. J. Org. Chem. 2016, 81, 11706.

    2. [2]

      Yao, X.-S.; Wang, N.-L.; Bei, Z.-G.; Liu, D.-L. CN 1594311, 2005[Chem. Abstr. 2006, 144, 184664].

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      (a) Wang, B. Q. Coord. Chem. Rev. 2006, 250, 242.
      (b) Alt, H. G.; Kçppl, A. Chem. Rev. 2000, 100, 1205.
      (c) Zargarian, D. Coord. Chem. Rev. 2002, 233~234, 157.

    7. [7]

      (a) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
      (b) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118.
      (c) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 5565.
      (d) Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700.
      (e) Yang, X.-H.; Yue, H.-T.; Yu, N.; Li, Y.-P.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1181.
      (f) Yang, S.; Che, W.; Wu, H.-L.; Zhu, S.-F.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1977.
      (g) Bao, D.-H.; Wu, H.-L.; Liu, C.-L.; Xie, J.-H.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2015, 54, 8791.

    8. [8]

      (a) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154.
      (b) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74, 5471.
      (c) Miyamoto, M.; Harada, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2008, 10, 2975.
      (d) Jia, X. D.; Petrone, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 9870.
      (e) Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638.
      (f) Zheng, H. J.; Xie, X.; Yang, J.; Zhao, C. G.; Jing, P.; Fang, B. W.; She, X. G. Org. Biomol. Chem. 2011, 9, 7755.
      (g) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
      (h) Li, C.; Wang, J. Tetrahedron Lett. 2009, 50, 2956.

    9. [9]

      (a) Kinoshita, H.; Hirai, N.; Miura, K. J. Org. Chem. 2014, 79, 8171.
      (b) Wu, L.; Shi, M.; Li, Y. X. Chem.-Eur. J. 2010, 16, 5163.
      (c) Niharika, P.; Satyanarayana, G. ChemistrySelect 2018, 3, 289.
      (d) Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett. 2009, 50, 4978.
      (e) Zhou, X. B.; Zhang, H. M.; Xie, X.; Li, Y. Z. J. Org. Chem. 2008, 73, 3958.
      (f) Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett. 2009, 50, 4978.
      (g) Liu, C.; Zhang, H.; Ding, L.; Liu, J. Chin. J. Chem. 2018, 36, 737.
      (h) Shen, G.; Sun, J.; Yan, C. Chin. J. Chem. 2016, 34, 412.

    10. [10]

      (a) Liu, Z. Q.; Wang, J. G.; Han, J.; Zhao, Y. K.; Zhou, B. Tetrahedron Lett. 2009, 50, 1240.
      (b) Li, H.; Jin, Y.; Wang, J.; Tian, S. K. Org. Biomol. Chem. 2009, 7, 3219.
      (c) Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2009, 14, 2354.
      (d) Ren, K.; Wang, M.; Wang. L. Eur. J. Org. Chem. 2010, 3, 565.

    11. [11]

      Liu, C. R.; Yang, F. L.; Jin, Y.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett. 2010, 12, 3832.  doi: 10.1021/ol101524w

    12. [12]

      Bu, X. L.; Hong, J. Q.; Zhou, X. G. Adv. Synth. Catal. 2011, 353, 2111.  doi: 10.1002/adsc.v353.11/12

    13. [13]

      Huang, W.; Zheng, P. Z.; Zhang, Z. X.; Liu, R. T.; Chen, Z. X.; Zhou, X. G. J. Org. Chem. 2008, 73, 6845.  doi: 10.1021/jo801210n

    14. [14]

    15. [15]

      (a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
      (b) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692.
      (c) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
      (d) Yu, J.; Yan, H.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 1143.
      (e) Yu, J.; Zhao, H.; Liang, S.; Bao, X.; Zhu, C. Org. Biomol. Chem. 2015, 13, 7924.
      (f) Fan, X.; Zhao, H.; Yu, J.; Bao, X.; Zhu, C. Org. Chem. Front. 2016, 3, 227.
      (g) Ren, R.; Wu, Z.; Zhu, C. Chem. Commun. 2016, 52, 8160.
      (h) Wang, D.; Ren, R.; Zhu, C. J. Org. Chem. 2016, 81, 8043.
      (i) Huan, L.; Zhu, C. Org. Chem. Front. 2016, 3, 1467.
      (j) Wang, M.; Wu, Z.; Zhu, C. Org. Chem. Front. 2017, 4, 427.
      (k) Mao, W.; Zhu, C. J. Org. Chem. 2017, 82, 9133.
      (l) Mao, W.; Zhu, C. Synlett 2018, 29, 731.
      (m) Wang, D.; Mao, J.; Zhu, C. Chem. Sci. 2018, 9, 5805.

    16. [16]

      (a) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (b) Khoury, P. R.; Goddard, J. D. Tam, W. Tetrahedron 2004, 60, 8103.

  • 加载中
    1. [1]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    8. [8]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    9. [9]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    19. [19]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(27)
  • Abstract views(1870)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return