Citation: Bai Qifan, He Jingyao, Zhu Xiaoqing, Feng Gaofeng, Jin Cheng'an. Visible-Light Mediated Synthesis of 6H-Benzo[c]chromenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 527-531. doi: 10.6023/cjoc201807058 shu

Visible-Light Mediated Synthesis of 6H-Benzo[c]chromenes

  • Corresponding author: Jin Cheng'an, jca@usx.edu.cn
  • Received Date: 31 July 2018
    Revised Date: 2 September 2018
    Available Online: 12 February 2018

    Fund Project: the Research Project of Shaoxing University 2017LG1001the National Natural Science Foundation of China 21302130Project supported by the National Natural Science Foundation of China (No. 21302130) and the Research Project of Shaoxing University (No. 2017LG1001)

Figures(4)

  • An effective visible-light mediated Ru-catalyzed protocol for accessing 6H-benzo[c]chromenes from benzyloxybenzenediazonium salt via a sequence of dediazoniation, intramolecular radical cyclization and aromaticzation has been developed. The protocol features mild conditions, simple operation and high efficiency, providing a new approach for synthesizing 6H-benzo[c]chromenes.
  • 加载中
    1. [1]

      (a) Evidente, A.; Punzo, B.; Andolfi, A.; Berestetskiy, A.; Motta, A. J. Agric. Food Chem. 2009, 57, 6656.
      (b) Berestetskiy, A.; Cimmino, A.; Sofronova, J.; Dalinova, A.; Avolio, F.; Evidente, M.; Chisty, L.; Krivorotov, D.; Evidente, A. J. Agric. Food Chem. 2015, 63, 1196.

    2. [2]

      Radwan, M. M.; ElSohly, M. A.; Slade, D.; Ahmed, S. A.; Khan, I. A.; Ross, S. A. J. Nat. Prod. 2009, 72, 906.  doi: 10.1021/np900067k

    3. [3]

      Killander, D.; Sterner, O. Eur. J. Org. Chem. 2014, 1594.

    4. [4]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
      (c) Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 21, 5062.
      (d) Cano, R.; Schmidt, A. F.; McGlacken, G. P. Chem. Sci. 2015, 6, 5338.

    5. [5]

      (a) Majumdar, K. C.; Chakravorty, S.; De, N. Tetrahedron Lett. 2008, 49, 3419.
      (b) Liu, W.; Cao, H.; Xin, J.; Jin, L.; Lei, A. Chem.-Eur. J. 2011, 17, 3588.
      (c) Zhou, J.; Huang, L. Z.; Li, Y. Q.; Du, Z. T. Tetrahedron Lett. 2012, 53, 7036.
      (d) Villamizar, M. C. O.; Zubkov, F. I.; Galvis, C. E. P.; Méndez, L. Y. V.; Kouznetsov, V. V. Org. Chem. Front. 2017, 4, 1736.
      (e) Guo, D. D.; Li, B.; Wang, D. Y.; Gao, Y. R.; Guo, S. H.; Pan, G. F.; Wang, Y. Q. Org. Lett. 2017, 19, 798.
      (f) Cano, R.; Pérez, J. M.; Ramón, D. J.; McGlacken, G. P. Tetrahedron 2016, 72, 1043.
      (g) Sun, C. L.; Gu, Y. F.; Huang, W. P.; Shi, Z. J. Chem. Commun. 2011, 47, 9813.

    6. [6]

      Singha, R.; Ahmed, A.; Nuree, Y.; Ghosh, M.; Ray, J. K. RSC Adv. 2015, 5, 50174.  doi: 10.1039/C5RA07532G

    7. [7]

      He, Y.; Zhang, X.; Cui, L.; Wang, J.; Fan, X. Green Chem. 2012, 14, 3429.  doi: 10.1039/c2gc36379h

    8. [8]

    9. [9]

    10. [10]

      (a) Guo, W.; Lu, L. Q.; Wang, Y.; Wang, Y. N.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 2265.
      (b) Wang, D.; Zhang, L.; Luo, S. Chin. J. Chem. 2018, 36, 311.
      (c) Feng, J.; Li, B.; Jiang, J.; Zhang, M.; Ouyang, W.; Li, C.; Fu, Y.; Gu, Z. Chin. J. Chem. 2018, 36, 11.

    11. [11]

      (a) Kwon, S. J.; Kim, D Y. Org. Lett. 2016, 18, 4562.
      (b) Xue, D.; Jia, Z. H.; Zhao, C. J.; Zhang, Y. Y.; Wang, C.; Xiao, J. Chem.-Eur. J. 2014, 20, 2960.
      (c) Wassmundt, F. W.; Kiesman, W. F. J. Org. Chem. 1996, 60, 196.
      (d) Cano-Yelo, H.; Deronzier, A. J. Chem. Soc., Perkin Trans. 2 1984, 1093.

    12. [12]

      (a) Lee, J. C.; Yuk, J. Y.; Cho, S. H. Synth. Commun. 1995, 25, 1367.
      (b) Maiorana, S.; Baldoli, C.; Licandro, E.; Casiraghi, L.; de Magistris, E.; Paio, A.; Provera, S.; Seneci, P. Tetrahedron Lett. 2000, 41, 7271.
      (c) Schiemann, G.; Winkelmüller, W. Org. Synth. 1933, 13.
      (d) Broxton, T. J.; Bunnett, J. F.; Paik, C. H. J. Org. Chem. 1977, 42, 643.

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    15. [15]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(30)
  • Abstract views(845)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return