Citation: Zhou Qian, Zheng Dandan, Shi Yujun, Yao Wei, Qian Hongwei, Ding Ying, Wei Zhonghao, Shen Aibao, Feng Xia, Shi Jian, Dai Hong. Synthesis and Insecticidal Activities of Novel Pyrazole Oxime Ethers Containing an Oxazole Moiety[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3318-3325. doi: 10.6023/cjoc201807048 shu

Synthesis and Insecticidal Activities of Novel Pyrazole Oxime Ethers Containing an Oxazole Moiety

  • Corresponding author: Shen Aibao, wjmnt@ntu.edu.cn Dai Hong, daihong_2015@aliyun.com
  • Received Date: 26 July 2018
    Revised Date: 29 August 2018
    Available Online: 5 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21372135), the Research Foundation of the Six People Peak of Jiangsu Province (No. 2013-SWYY-013), and the Science and Technology Project Fund of Nantong City (No. MS22015020) and the Science and Technology Innovation Foundation for the College Students of Jiangsu Province (No. 201810304016Z)the Science and Technology Innovation Foundation for the College Students of Jiangsu Province 201810304016Zthe National Natural Science Foundation of China 21372135the Science and Technology Project Fund of Nantong City MS22015020the Research Foundation of the Six People Peak of Jiangsu Province 2013-SWYY-013

Figures(3)

  • In order to find new pyrazole oxime ether derivatives with potent bioactivities, fifteen novel pyrazole oxime ethers containing an oxazole moiety were designed and prepared according to the method of active substructure combination. Their structures were confirmed through 1H NMR, 13C NMR, and elemental analysis. Preliminary bioassay showed that most of the title compounds displayed wonderful insecticidal activities against Oriental armyworm, Aphis medicaginis and Tetranychus cinnabarinus. At the concentration of 500 μg/mL, ten compounds exhibited acaricidal activity against Tetranychus cinnabarinus with over 80%, especially four compounds indicated comparable insecticidal activity against Tetranychus cinnabarinus to that of the control of fenpyroximate, the lethal rates of nine compounds against Aphis medicaginis were all 100%, which were near to that of imidacloprid, and the lethal rates of fourteen compounds against Oriental armyworm were all 100%, which were similar to that of pyridalyl. At the concentration of 100 μg/mL, the lethal rates of three compounds against Tetranychus cinnabarinus were all 60%, and the lethal rates of two compounds against Aphis medicaginis were 90% and 100%. When the concentration was reduced to 20 μg/mL, compound 1, 3-dimethyl-5-(4-methylphenoxy)-1H-pyrazole-4-carbaldehyde-O-[4-(oxazol-5-yl)phenylmethyl]oxime (7i) still had insecticidal activity against Aphis medicaginis with 60%.
  • 加载中
    1. [1]

      Zhou, Y. Y.; Wang, B. L.; Di, F. J.; Xiong, L. X.; Yang, N.; Li, Y. Q.; Li, Y. X.; Li, Z. M. Bioorg. Med. Chem. Lett. 2014, 24, 2295.  doi: 10.1016/j.bmcl.2014.03.077

    2. [2]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Yuan, J.; Yang, G.; Xu, T. M.; Peng, W. L. Bioorg. Med. Chem. Lett. 2016, 26, 3626.  doi: 10.1016/j.bmcl.2016.06.004

    3. [3]

      Zhai, Z. W.; Wang, Q.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Liu, X. H. Chin. J. Org. Chem. 2017, 37, 232 (in Chinese).
       

    4. [4]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L. Eur. J. Med. Chem. 2017, 125, 881.  doi: 10.1016/j.ejmech.2016.10.017

    5. [5]

      Liu, X. H.; Wang, Q.; Sun, Z. H.; Wedge, D. E.; Becnel, J. J.; Estep, A. S.; Tan, C. X. Weng, J. Q. Pest Manage. Sci. 2017, 73, 953.  doi: 10.1002/ps.2017.73.issue-5

    6. [6]

      Shi, J. J.; Ren, G. H.; Wu, N. J.; Weng, J. Q.; Xu, T. M.; Liu, X. H.; Tan, C. X. Chin. Chem. Lett. 2017, 28, 1727.  doi: 10.1016/j.cclet.2017.05.015

    7. [7]

      Li, Q. M.; Pang, K. S.; Zhao, J. P.; Liu, X. H.; Weng, J. Q. Chin. J. Org. Chem. 2017, 37, 1009 (in Chinese).
       

    8. [8]

      Dai, X. Q.; Zhu, Y. B.; Wang, Z. Y.; Weng, J. Q. Chin. J. Org. Chem. 2017, 37, 1924 (in Chinese).
       

    9. [9]

      Shi, J. J.; Ren, G. H.; Dai, Z. M.; Wu, N, J.; Weng, J. Q.; Xu, T. M.; Liu, X. H.; Tan, C. X. Lett. Drug Des. Discovery 2018, 15, 15.
       

    10. [10]

      Shen, Z. H.; Sun, Z. H.; Becnel, J. J.; Estep, A.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Han, L.; Liu, X. H. Lett. Drug Des. Discovery 2018, 15, 951.  doi: 10.2174/1570180815666180102141640

    11. [11]

      Chen, L.; Shen, Z. H.; Xu, T. M.; Tan, C. X.; Weng, J. Q.; Han, L.; Peng. W. L.; Xiu, X. H. J. Heterocycl. Chem. 2018, 55, 946.  doi: 10.1002/jhet.v55.4

    12. [12]

      Park, H. J.; Lee, K.; Park, S. J.; Ahn, B.; Lee, J. C.; Cho, H. Y.; Lee, K. I. Bioorg. Med. Chem. Lett. 2005, 15, 3307.  doi: 10.1016/j.bmcl.2005.03.082

    13. [13]

      Li, Y.; Zhang, H. Q.; Liu, J.; Yang, X. P.; Liu, Z. J. J. Agric. Food Chem. 2006, 54, 3636.  doi: 10.1021/jf060074f

    14. [14]

      Wang, S. L.; Shi, Y. J.; He, H. B.; Li, Y.; Li, Y.; Dai, H. Chin. Chem. Lett. 2015, 26, 672.  doi: 10.1016/j.cclet.2015.04.017

    15. [15]

      Dai, H.; Ge, S. S.; Guo, J.; Chen, S.; Huang, M. L.; Yang. J. Y.; Sun, S. Y.; Ling, Y.; Shi, Y. J. Eur. J. Med. Chem. 2018, 143, 1066.  doi: 10.1016/j.ejmech.2017.11.098

    16. [16]

      Hamaguchi, H.; Kajihara, O.; Katoh, M. J. Pestic. Sci. 1995, 20, 173.  doi: 10.1584/jpestics.20.173

    17. [17]

      Fu, C. R.; Peng, J.; Ning, Y.; Liu, M.; Shan, P. C.; Liu, J.; Li, Y. Q.; Hu, F. Z.; Zhu, Y. Q.; Yang, H. Z.; Zou, X. M. Pest Manage. Sci. 2014, 70, 1207.  doi: 10.1002/ps.2014.70.issue-8

    18. [18]

      Dai, H.; Xiao, Y. S.; Li, Z.; Xu, X. Y.; Qian, X. H. Chin. Chem. Lett. 2014, 25, 1014.  doi: 10.1016/j.cclet.2014.06.011

    19. [19]

      Dai, H.; Chen, J.; Li, G.; Ge, S. S.; Shi, Y. J.; Fang, Y.; Ling, Y. Bioorg. Med. Chem. Lett. 2017, 27, 950.  doi: 10.1016/j.bmcl.2016.12.083

    20. [20]

      Ouyang, G. P.; Cai, X. J.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. J. Agric. Food Chem. 2008, 56, 10160.  doi: 10.1021/jf802489e

    21. [21]

      Guan, A. Y.; Qin, Y. K.; Wang, J. F.; Li, B. J. Fluorine Chem. 2013, 156, 120.  doi: 10.1016/j.jfluchem.2013.09.003

    22. [22]

      Li, G. Y.; Qian, X. H.; Cui, J. N.; Huang, Q. C.; Zhang, R.; Guan, H. J. Agric. Food Chem. 2006, 54, 125.  doi: 10.1021/jf051928j

    23. [23]

      Prakash, T. B.; Reddy, G. D.; Padmaja, A.; Padmavathi, V. Eur. J. Med. Chem. 2014, 82, 347.  doi: 10.1016/j.ejmech.2014.06.001

    24. [24]

      Ohnmacht, S. A.; Ciancimino, C.; Vignaroli, G.; Gunaratnam, M.; Neidle, S. Bioorg. Med. Chem. Lett. 2013, 23, 5351.  doi: 10.1016/j.bmcl.2013.07.057

    25. [25]

      Li, Y.; Ma, L. F.; Wang, X. J.; Lei, B. W.; Zhao, Y.; Yang, J. Y.; Li, Z. Y. Chin. J. Org. Chem. 2017, 37, 1213 (in Chinese).
       

    26. [26]

      Andrade, S. F.; Oliveira, B. G.; Pereira, L. C.; Ramos, J. P.; Joaquim, A. R.; Steppe, M.; Souza-Fagundes, E. M.; Alves, R. J. Eur. J. Med. Chem. 2017, 138, 13.  doi: 10.1016/j.ejmech.2017.06.022

    27. [27]

      Yu, W. Q.; Chang, J. B. Chin. J. Org. Chem. 2018, 38, 215 (in Chinese).
       

    28. [28]

      Liu, S. H.; Ling, Y.; Yang, X. L. Chin. J. Struct. Chem. 2013, 32, 931.
       

    29. [29]

      Mao, M. Z.; Li, Y. X.; Zhou, Y. Y.; Zhang, X. L.; Liu, Q. X.; Di, F. J.; Song, H. B.; Xiong, L. X.; Li, Y. Q.; Li, Z. M. J. Agric. Food Chem. 2014, 62, 1536.  doi: 10.1021/jf500003d

    30. [30]

      Wang, M. M.; Zhang, Q. Q.; Yue, K.; Li, Q. S.; Xu, F. B. Chin. J. Org. Chem. 2017, 37, 1774 (in Chinese).
       

    31. [31]

      Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.; Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390.  doi: 10.1021/jm9800853

    32. [32]

      Park, M. S.; Park, H. J.; Park, K. H.; Lee, K. I. Synth. Commun. 2004, 34, 1541.  doi: 10.1081/SCC-120030741

    33. [33]

      Dai, H.; Ge, S. S.; Li, G.; Chen, J.; Shi, Y. J.; Ye, L. Y.; Ling, Y. Bioorg. Med. Chem. Lett. 2016, 26, 4504.  doi: 10.1016/j.bmcl.2016.07.068

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(2)
  • Abstract views(1089)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return