Citation: Lu Lulu, Zhou Bingwei, Jin Hongwei, Liu Yunkui. Radical-Triggered Tandem Reaction of Vinyl Azides with Isopropylxanthic Disulfide for the Synthesis of 6-Sulfanylmethyl Phenanthridines[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 515-520. doi: 10.6023/cjoc201807025 shu

Radical-Triggered Tandem Reaction of Vinyl Azides with Isopropylxanthic Disulfide for the Synthesis of 6-Sulfanylmethyl Phenanthridines

  • Corresponding author: Jin Hongwei, jhwei828@zjut.edu.cn Liu Yunkui, ykuiliu@zjut.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 10 September 2018
    Available Online: 14 February 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technologythe National Natural Science Foundation of China 21372201the National Natural Science Foundation of China 21772176

Figures(3)

  • An 2, 2'-azobis(2-methylpropionitrile) (AIBN) initiated tandem reaction of vinyl azides with isopropylxanthic disulfide to construct C-S/C-N bonds was disclosed. A range of functionalized 6-sulfanylmethyl phenanthridines could be easily accessed in 50%~84% yields with a good regioselectivity. The mechanism study indicates a free radical pathway in this reaction.
  • 加载中
    1. [1]

      (a) Keene, B. R. T.; Tissington, P. Adv. Heterocycl. Chem. 1971, 13, 315.
      (b) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
      (c) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.

    2. [2]

      (a) Cappelli, A.; Anzini, M.; Vomero, S.; Mannuni, L.; Makovec, F.; Doucet, E.; Hamon, M.; Bruni, G.; Romeo, M. R.; Menziani, M. C.; Benedetti, P. G.; Langer, T. J. Med. Chem. 1998, 41, 728.
      (b) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.; MacKay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001, 11, 2643.
      (c) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053.
      (d) Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, R.; Mathys, V.; Verschaeve, L.; Huygen, K.; Kimpe, N. D. J. Med. Chem. 2014, 57, 2895.
      (e) Naidua, K. M.; Nagesha, H. N.; Singhb, M.; Sriramc, D.; Yogeeswaric, P.; Sekhara, K. V. G. C. Eur. J. Med. Chem. 2015, 92, 415.
      (f) Riddell, I. A.; Johnstone, T. C.; Park, G. Y.; Lippard, S. J. Chem.-Eur. J. 2016, 22, 7574.

    3. [3]

      (a) Alonso, R.; Campos, P. J.; García, B.; Rodríguez, M. A. Org. Lett. 2006, 8, 3521.
      (b) Portela-Cubillo, F.; Lymer, J.; Scanlan, E. M.; Scott, J. S.; Walton, J. C. Tetrahedron 2008, 64, 11908.
      (c) McBurney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974.
      (d) McBurney, R. T.; Walton, J. C. J. Am. Chem. Soc. 2013, 135, 7349.
      (e) McBurney, R. T.; Walton, J. C. Beilstein J. Org. Chem. 2013, 9, 1083.
      (f) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.
      (g) Hofstra, J. L.; Grassbaugh, B. R.; Tran, Q. M.; Armada, N. R.; de Lijser, H. J. P. J. Org. Chem. 2015, 80, 256.
      (h) Liu, X.; Qing, Z.; Cheng, P.; Zheng, X.; Zeng, J.; Xie, H. Molecules 2016, 21, 1690.
      (i) Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Org. Lett. 2017, 19, 4026.

    4. [4]

      (a) Nanni, D.; Pareschi, P.; Rizzoli, C.; Sgarabotto, P.; Tundo, A. Tetrahedron 1995, 51, 9045.
      (b) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem., Int. Ed. 2012, 51, 11363.
      (c) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10972.
      (d) Leifert, D.; Daniliuc, C. G.; Studer, A. Org. Lett. 2013, 15, 6286.
      (e) Sha, W.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 9179.
      (f) Fang, H.; Zhao, J.; Qian, P.; Han, J.; Pan, Y. Asian J. Org. Chem. 2014, 3, 1266.
      (g) Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z.-W.; Zhou, L. Green Chem. 2014, 16, 2418.
      (h) Fang, H.; Zhao, J. C.; Qian, P.; Han, J. L.; Pan, Y. Asian J. Org. Chem. 2014, 12, 1266.
      (i) Zhang, Z.; Tang, X.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 4401.
      (j) Lu, S.; Gong, Y.; Zhou, D. J. Org. Chem. 2015, 80, 9336.
      (k) Zhang, H.; Shi, D.; Ren, S.; Jin, H.; Liu, Y. Eur. J. Org. Chem. 2016, 4224.
      (l) Wu, C.; Zhou, Y.; Dong, X.; Qu, J. ARKIOC 2016, 110.
      (m) Yang, Z.; Song, X.; Wei, Z.; Cao, J.; Liang, D.; Duan, H.; Lin, Y. Tetrahedron Lett. 2016, 57, 2410.
      (n) Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. K. P. Synlett 2018, 29, 176.

    5. [5]

      (a) Wang, Y.-F.; Lonca, G. H.; Runigo, M. L.; Chiba, S. Org. Lett. 2014, 16, 4272.
      (b) Yang, J.-C.; Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806.
      (c) Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.
      (d) Mackay, E. G.; Studer, A. Chem. Eur. J. 2016, 22, 13455.
      (e) Mao, L.-L.; Zheng, D.-G.; Zhu, X.-H.; Zhou, A.-X.; Yang, S.-D. Org. Chem. Front. 2018, 5, 232.
      (f) Li, Y.; Zhu, Y.; Yang, S.-D. Org. Chem. Front. 2018, 5, 822.
      (g) Yang, J.-C.; Zhang, J.-Y.; Zhang, J.-J.; Duan, X.-H.; Guo, L.-N. J. Org. Chem. 2018, 83, 1598.

    6. [6]

      (a) Casellato, U.; Vidali, M.; Vigato, P. A. Coord. Chem. Rev. 1979, 28, 231.
      (b) Nief, F. Coord. Chem. Rev. 1998, 178.
      (c) Arda, M.; Ozturk, I. I.; Banti, C. N.; Kourkoumelis, N.; Manoli, M.; Tasiopoulos, A. J.; Hadjikakou, S. K. RSC Adv. 2016, 6, 29026.
      (d) Ephritikhine, M. Coor. Chem. Rev. 2016, 319, 35.
      (e) Boreen, M. A.; Parker, B. F.; Hohloch, S.; Skeel, B. A.; Arnold, J. Dalton Trans. 2018, 47, 96.

    7. [7]

      (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (b) Doroszuk, J.; Musiejuk, M.; Demkowicz, S.; Rachon, J.; Witt, D. RSC Adv. 2016, 6, 105449.
      (c) Jiao, J.; Wei, L.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y. Adv. Synth. Catal. 2016, 358, 268.
      (d) Dong, Z.-B.; Liu, X.; Bolm, C. Org. Lett. 2017, 19, 5916.
      (e) Cao, Q.; Peng, H.-Y.; Cheng, Y.; Dong, Z.-B. Synthesis 2018, 50, 1527.

    8. [8]

      (a) Fuchigami, T.; Chen, C.-S.; Nonaka, T.; Yen, M.-Y.; Tien, H.-J. Bull. Chem. Soc. Jpn. 1986, 59, 487.
      (b) Gueyrard, D.; Tatibouët, A.; Gareau, Y.; Rollin, P. Org. Lett. 1999, 1, 521.
      (c) Enders, D.; Rembiak, A.; Liebich, J. X. Synthesis 2011, 281.
      (d) Camerel, F.; Jeannin, O.; Yzambart, G.; Fabre, B.; Lorcy, D.; Fourmigué, M. New J. Chem. 2013, 37, 992.
      (e) Zhang, L.; Zhu, J.; Ma, J.; Wu, L.; Zhang, W.-H. Org. Lett. 2017, 19, 6308.

    9. [9]

      (a) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740.
      (b) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.

    10. [10]

      (a) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147.
      (b) Albéniz, A.C.; Espinet, P.; López-Fernández, R.; Sen, A. J. Am. Chem. Soc. 2002, 124, 11278.

    11. [11]

      Winterie, J. S.; Mill, T. J. Am. Chem. Soc. 1980, 102, 6336.  doi: 10.1021/ja00540a027

    12. [12]

      Gareau, Y.; Beauchemin, A. Heterocycles 1998, 48, 2003.  doi: 10.3987/COM-98-8230

    13. [13]

      Curran, D. P.; Keller, A. J. Am. Chem. Soc. 2006, 128, 13706.  doi: 10.1021/ja066077q

    14. [14]

      Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3038.  doi: 10.1039/C8GC00223A

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    3. [3]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    8. [8]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    9. [9]

      Yu-Chen FangJia-He ChenMi-Zhuan LiHui-Min LiMei BaiYong-Zheng ChenZi-Wei GaoWen-Yong Han . Forging of silaoxycarbocyclics by interrupted Catellani reaction. Chinese Chemical Letters, 2025, 36(7): 110474-. doi: 10.1016/j.cclet.2024.110474

    10. [10]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    11. [11]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    12. [12]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    13. [13]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    14. [14]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    15. [15]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    16. [16]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    17. [17]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    18. [18]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    19. [19]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    20. [20]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

Metrics
  • PDF Downloads(7)
  • Abstract views(843)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return