Citation: Zhang Juan, Wang Biyun, Liu Yisen, Cao Song. Stereoselective Synthesis of Z-Fluorostyrene Derivatives via Nickel-Catalyzed Cross-Coupling of gem-Difluorostyrenes with Organozinc Reagents[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 249-256. doi: 10.6023/cjoc201807013 shu

Stereoselective Synthesis of Z-Fluorostyrene Derivatives via Nickel-Catalyzed Cross-Coupling of gem-Difluorostyrenes with Organozinc Reagents

  • Corresponding author: Cao Song, scao@ecust.edu.cn
  • Received Date: 6 July 2018
    Revised Date: 5 September 2018
    Available Online: 17 January 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21472043, 21272070)the National Natural Science Foundation of China 21472043the National Natural Science Foundation of China 21272070

Figures(3)

  • An efficient method for the synthesis of various Z-fluorostyrene derivatives via nickel-catalyzed cross-coupling of gem-difluorostyrenes with organozinc reagents with the assistance of LiCl was developed. The reaction proceeds efficiently under mild condition, affording monofluoroalkenes in moderate to good yields. This novel method exhibits good functional group compatibility and excellent stereoselectivity.
  • 加载中
    1. [1]

    2. [2]

      (a) Laue, K. W.; Mück-Lichtenfeld, C.; Haufe, G. Tetrahedron 1999, 55, 10413.
      (b) Guérin, D.; Dez, I.; Gaumont, A. C.; Pannecoucke, X.; Couve-Bonnaire, S. Org. Lett. 2016, 18, 3606.

    3. [3]

    4. [4]

      (a) Drouin, M.; Hamel, J.-D.; Paquin J.-F. Synthesis 2018, 50, 881.
      (b) Koh, M. J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Nature 2016, 531, 459.

    5. [5]

      (a) Hara, S. Top. Curr. Chem. 2012, 327, 59.
      (b) Zhang, X.-X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.

    6. [6]

      (a) Hu, J.-F.; Han, X.-W.; Yuan, Y.; Shi, Z.-Z. Angew. Chem., Int. Ed. 2017, 56, 13342.
      (b) Kong, L.-H.; Zhou, X.-K.; Li, X.-W. Org. Lett. 2016, 18, 6320.

    7. [7]

      Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.  doi: 10.1039/C7CC04131D

    8. [8]

      Kojima, R.; Kubota, K.; Ito, H. Chem. Commun. 2017, 53, 10688.  doi: 10.1039/C7CC05225A

    9. [9]

      Kong, L-H.; Liu, B.-X.; Zhou, X.-K.; Wang, F.; Li, X.-W. Chem. Commun. 2017, 53, 10326.  doi: 10.1039/C7CC06048C

    10. [10]

      Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.  doi: 10.1021/jacs.7b06469

    11. [11]

      (a) Negishi, E.-I. Angew. Chem., Int. Ed. 2011, 50, 6738.
      [b] Wang, K.; Kong, W. Q. Chin. J. Chem. 2018, 36, 247.
      [c] Zhang, P.-C.; Wang Y. D.; Qian, D. Y.; Li, W. B.; Zhang, J. L. Chin. J. Chem. 2017, 35, 849.

    12. [12]

      Gerber, R.; Frech, C. M. Chem. Eur. J. 2011, 17, 11893.  doi: 10.1002/chem.v17.42

    13. [13]

      Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615.  doi: 10.1002/anie.201207750

    14. [14]

      (a) Sun, A. D.; Leung, K.; Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A. Chem.-Eur. J. 2014, 20, 3162.
      (b) Zhu, F.; Wang, Z.-X. J. Org. Chem. 2014, 79, 4285.
      (c) Xiao, S.-H.; Xiong, Y.; Zhang, X.-X.; Cao, S. Tetrahedron 2014, 70, 4405.

    15. [15]

      Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005, 1771.
       

    16. [16]

      Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.  doi: 10.1021/ja109911p

    17. [17]

      Ohashi, M.; Kamura, R.; Doi, R.; Ogoshi, S. Chem. Lett. 2013, 42, 933.  doi: 10.1246/cl.130294

    18. [18]

      (a) Xiong, Y.; Huang, T.; Ji, X.-F.; Wu, J.-J., Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
      (b) Zhang, J.; Xu, C.-Y.; Wu, W.; Cao, S. Chem. Eur. J. 2016, 22, 9902.
      (c) Zhang, J.; Dai, W.-P.; Liu, Q.-Y.; Cao, S. Org. Lett. 2017, 19, 3283.

    19. [19]

      (a) Dai, W.-P.; Xiao, J.; Jin, G.-Y.; Wu, J.-J.; Cao, S. J. Org. Chem. 2014, 79, 10537.
      (b) Dai, W.-P.; Shi, H.-Y.; Zhao, X.-H.; Cao, S. Org. Lett. 2016, 18, 4284.

    20. [20]

      (a) Zeng, X.-Z.; Qian, M.-X.; Hu, Q.; Negishi, E.-I. Angew. Chem., Int. Ed. 2004, 43, 2259.
      (b) Tan, Z.; Negishi, E.-I. Angew. Chem., Int. Ed. 2006, 45, 762.

    21. [21]

      Qiu, J.; Gyorokos, A.; Tarasow, T. M.; Guiles, J. J. Org. Chem. 2008, 73, 9775.  doi: 10.1021/jo801647x

    22. [22]

      Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 443.
       

    23. [23]

      (a) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
      (b) Ichikawa, J.; Sakoda, K.; Mihara, J.; Ito, N. J. Fluorine Chem. 2006, 127, 489.

    24. [24]

      Shi, H.-Y.; Dai, W.-P.; Wang, B.-Y.; Cao, S. Organometallics 2018, 37, 459.  doi: 10.1021/acs.organomet.7b00859

    25. [25]

      Thomoson, C. S.; Martinez, H.; Dolbier Jr, W. R. J. Fluorine Chem. 2013, 150, 53.  doi: 10.1016/j.jfluchem.2013.02.026

    26. [26]

      Ji, Y.; Zhong, N.; Kang, Z.-N.; Yan, G.-B.; Zhao, M. Synlett 2018, 29, 209.  doi: 10.1055/s-0036-1590907

    27. [27]

      Shao, Q.; Huang, Y. Chem. Commun. 2015, 51, 6584.  doi: 10.1039/C5CC01407G

    28. [28]

      Wenz, J.; Rettenmeier, C. A.; Wadepohl, H.; Gade, L. H. Chem. Commun. 2016, 52, 202.  doi: 10.1039/C5CC08950F

    29. [29]

      Eric, R.; Mou ȃd, A.; Gérard, C. J. Organomet. Chem. 2001, 624, 376.  doi: 10.1016/S0022-328X(00)00891-3

    30. [30]

      Loefflerx, L. J.; Delorefice, S. B. J. Pharm. Sci. 1975, 64, 1170.  doi: 10.1002/jps.2600640708

    31. [31]

      Kim, S. P.; Yang, J. Y.; Kang, M. Y.; Park, J. C.; Nam, S. H.; Friedman, M. J. Agric. Food Chem. 2011, 59, 4570.  doi: 10.1021/jf2003392

  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

Metrics
  • PDF Downloads(16)
  • Abstract views(1268)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return