Citation: Ye Zhonghua, Yang Jiali, Ling Zhitian, Zhao Yi, Chen Guo, Zheng Yanqiong, Wei Bin, Shi Ying. Synthesis of Host Material Containing Indolocarbazole Group Featuring Bipolar and Thermally Activated Delayed Fluorecence and Its Application[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 449-455. doi: 10.6023/cjoc201807006 shu

Synthesis of Host Material Containing Indolocarbazole Group Featuring Bipolar and Thermally Activated Delayed Fluorecence and Its Application

  • Corresponding author: Wei Bin, bwei@shu.edu.cn Shi Ying, yshi@shu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 3 July 2018
    Revised Date: 3 September 2018
    Available Online: 26 February 2019

    Fund Project: the National Key Basic Research and Development Program of China 2015CB655005the National Natural Science Foundation of China 61775130Project supported by the National Natural Science Foundation of China (Nos. 51725505 and 61775130), the National Key Basic Research and Development Program of China (973 program, No. 2015CB655005) and the Science and Technology Committee of Shanghai City (No. 15590500500)the National Natural Science Foundation of China 51725505the Science and Technology Committee of Shanghai City 15590500500the National Key Basic Research and Development Program of China 973 program

Figures(7)

  • The novel host material containing indolocarbazole group, 10-phenyl-10-(4-(7-phenylindolo[2, 3-b]carbazol-5(7H)-yl)phenyl)anthracen-9(10H)-one (DphAn-5PhIdCz), was designed and synthesized. The structures were characterized by NMR and their photophysical properties such as ultraviolet-visible absorption wavelength, fluorescence emission wavelength, fluorescence quantum yield, and transient fluorescence lifetime were measured. The DphAn-5PhIdCz was found to exhibit the characteritics of bipolar and thermally activated delayed fluorescence. By using this material as host of green emitter, (ppy)2 Iracac, high-efficiency and low roll-off phosphorescent organic light-emitting diode (PhOLED) was fabricated with the maximum current efficiency of 56.12 cd·A-1, the maximum external quantum efficiency of 15.70% and the maximum power efficiency of 71.3 lm·W-1. These make DphAn-5PhIdCz a promising host for high performance PhOLED displays and lighting applications.
  • 加载中
    1. [1]

      Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Nat. Photon. 2011, 5, 753.  doi: 10.1038/nphoton.2011.259

    2. [2]

      Chen, M.; Zhang, L.; Lin, H.; Li, Q.; Yu, J. S. J. Optoelec-tron·Laser 2012, 23, 1063(in Chinese).
       

    3. [3]

      Ding, L.; Zhang, F. H.; Li, Y. F.; Liang, T. J.; Zhang, J. J. Optoelectron·Laser 2011, 22, 1615(in Chinese).
       

    4. [4]

      Nakayama, T.; Hiyama, K.; Furukawa, K.; Ohtani, H. Sid Symp. Dig. Tech. Pap. 2007, 38, 1018.  doi: 10.1889/1.2785478

    5. [5]

      Zhou, T. X.; Tan, N.; Brown, J. J.; Shtein, M..; Forrest, S. R. Appl. Phys. Lett. 2005, 86, 3033.

    6. [6]

      Wang, Q.; Oswald, I. W. H.; Yang, X. L.; Zhou, G. J.; Jia, H. P.; Qiao, Q. Q.; Hoshikawa-Halbert, J.; Gnade, B. E. Adv. Electron. Mater. 2015, 1, 322.

    7. [7]

      Yu, D. H.; Zhao, F. C.; Han, C. M.; Xu, H.; Li, J.; Zhang, Z.; Deng, Z. P.; Ma, D. G.; Yan, P. F. Adv. Mater. 2012, 24, 509.  doi: 10.1002/adma.201104214

    8. [8]

      Kim, S. H.; Jang, J.; Yook, K. S.; Lee, J. Y. Appl. Phys. Lett. 2008, 92, 023513.  doi: 10.1063/1.2836270

    9. [9]

      Han, C. H.; Zhu, L. P.; Li, J.; Zhao, F. C.; Zhang, Z.; Xu, H.; Deng, Z. P.; Ma, D. G.; Yan, P. F. Adv. Mater. 2014, 26, 7070.  doi: 10.1002/adma.201400710

    10. [10]

      Park, Y. S.; Lee, S.; Kim, K. H.; Kim, S. Y.; Lee, J. H.; Kim, J. J. Adv. Funct. Mater. 2013, 23, 4914.  doi: 10.1002/adfm.v23.39

    11. [11]

      Shin, H.; Lee, S.; Kim, K. H.; Moon, C. K.; Yoo, S. J.; Lee, J. H.; Kim, J. J. Adv. Mater. 2014, 26, 4730.  doi: 10.1002/adma.v26.27

    12. [12]

      Lee, J. H.; Cheng, S. H.; Yoo, S. J.; Shin, H.; Chang, J. H.; Wu, C. I.; Wong, K. T.; Kim, J. J. Adv. Funct. Mater. 2015, 25, 361.  doi: 10.1002/adfm.201402707

    13. [13]

      Tao, Y. T.; Wang, Q.; Yang, C. L.; Wang, Q.; Zhang, Z. Q.; Zou, T. T.; Qin, J. G.; Ma, D. G. Angew. Chem. 2008, 120, 8224.  doi: 10.1002/ange.v120:42

    14. [14]

      Feng, Y. S.; Ping Li, P.; Zhuang, X. M.; Ye, K. Q.; Peng, T.; Liu, Y.; Wang, Y. Chem. Commun. 2015, 51, 12544.  doi: 10.1039/C5CC04297F

    15. [15]

      Kang, J. S.; Hong, T. R.; Kim, H. J.; Son, Y. H.; Lampande, R.; Kang, B. Y.; Lee, C.; Bin, J. K.; Lee, B. S.; Yang, J. H.; Kim, J.; Park, S.; Cho, M. J.; Kwon, J. H.; Choi, D. H. J. Mater. Chem. 2016, 4, 4512.

    16. [16]

      Lin, C. C.; Huang, M. J.; Chiu, M. J.; Huang, M. P.; Chang, C. C.; Liao, C. Y.; Chiang, K. M.; Shiau, Y. J.; Chou, T. Y.; Chu, L. K.; Lin, H. W.; Cheng, C. H. Chem. Mater. 2017, 29, 1527.  doi: 10.1021/acs.chemmater.6b03979

    17. [17]

      Liu, Y. Y.; Liang, F.; Yuan, Y.; Cui, L. S.; Jiang, Z. Q.; Liao, L. S. Chem. Commun. 2016, 52, 8149.  doi: 10.1039/C6CC02856J

    18. [18]

      Wang, H.; Meng, L. Q.; Shen, X. X.; Wei, X. F.; Zheng, X. L.; Lv, X. P.; Yi, Y. P.; Wang, Y.; Wang, P. F. Adv. Mater. 2015, 27, 4041.  doi: 10.1002/adma.201501373

    19. [19]

      Guo, K. P.; Wang, H. D.; Wang, Z. X.; Si, C. F.; Peng, C. Y.; Wei, B. Chem. Sci. 2017, 8, 1259.  doi: 10.1039/C6SC03008D

    20. [20]

      Zhang, H. H.; Wu, H. Imag. Sci. Photochem. 2015, 33, 183(in Chinese).  doi: 10.7517/j.issn.1674-0475.2015.03.183

    21. [21]

      Gao, Z. L.; Liu, Y. R.; Shi, Y.; Wang, Y. X.; Xu, Y.; Xu, Q. CN 106008264, 2017.

    22. [22]

      Wu, Y.; Li, Y. N.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2004, 127, 614.

    23. [23]

      Li, Y. N.; Wu, Y. L.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.  doi: 10.1002/(ISSN)1521-4095

    24. [24]

      Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 42.

    25. [25]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    26. [26]

      Tsai, M. H.; Hong, Y. H.; Chang, C. H.; Su, H. C.; Wu, C. C.; Mato-liukstyte, A.; Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J. V.; Hsu, C. P. Adv. Mater. 2007, 19, 862.  doi: 10.1002/(ISSN)1521-4095

    27. [27]

      Zhang, D. D.; Cai, M. H.; Zhang, Y.G.; Zhang, D. Q.; Duan, L. Mater. Horiz. 2016, 3, 145.  doi: 10.1039/C5MH00258C

    28. [28]

      Zeng, Q.; Li, Z.; Dong, Y. Q.; Di, C. A.; Qin, J. G.; Tang, B. Z. Chem. Commun. 2007, (1), 70.  doi: 10.1039/B613522F

    29. [29]

      Guo, K. P.; Zhang, J. H.; Xu, T.; Gao, X. C.; Wei, B. J. Disp. Technol. 2014, 10, 642.  doi: 10.1109/JDT.2014.2312318

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    5. [5]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    20. [20]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

Metrics
  • PDF Downloads(16)
  • Abstract views(1541)
  • HTML views(324)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return