Citation: Liu Haishan, Zhu Guoliang, Zhao Shuige, Fu Peng, Zhu Weiming. Bioactive Natural Products from the Marine Sponge-Derived Nocardiopsis dassonvillei OUCMDZ-4534[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 507-514. doi: 10.6023/cjoc201806045 shu

Bioactive Natural Products from the Marine Sponge-Derived Nocardiopsis dassonvillei OUCMDZ-4534

  • Corresponding author: Zhu Weiming, weimingzhu@ouc.edu.cn
  • Received Date: 29 June 2018
    Revised Date: 8 August 2018
    Available Online: 5 February 2018

    Fund Project: the National Natural Science Foundation of China 81561148012Project supported by the National Natural Science Foundation of China (Nos. 81561148012, U1501221, U1606403)the National Natural Science Foundation of China U1606403the National Natural Science Foundation of China U1501221

Figures(4)

  • Nocardiopsis dassonvillei OUCMDZ-4534 was isolated and identified from the sponge, Dysidea avara, from Xisha Islands of China. Compounds 1~12 were isolated from the fermenation broth of N. dassonvillei OUCMDZ-4534. By means of spectroscopic analysis, electronic circular dichroism (ECD) and 13C NMR calculations, their structures were identified as (3aS, 7aS)-3a-hydroxy-3a, 7a-dihydrobenzofuran-2(3H)-one (1a), (3aR, 7aR)-3a-hydroxy-3a, 7a-dihydrobenzofuran-2(3H)-one (1b), phenazine (2), 1-hydroxyphenazine (3), 1-methoxyphenazine (4), 1, 6-dihydroxyphenazine (5), 1-hydroxy-6-methoxy-phenazine (6), 1, 6-dihydroxy phenazin-5-oxide (7), dihydrogeodin (8), 2-acetamidophenol (9), 2-benzamidophenol (10), (E)-7-hydroxy cinnamic acid (11), and (E)-7-hydroxy-6-methoxycinnamic acid (12), respectively. This is the first time to resolve racemic-1 and identify the absolute structures of 1a and 1b. Compounds 1 and 9 displayed selective inhibition on A549 and K562 cell lines with the half maximal inhibitory concentration (IC50) of 0.47 and 0.46 μmol·L-1, respectively. Compounds 4~8 showed inhibitory activities against K562, A549 and MCF-7 cell lines with IC50 values ranging from 0.02 to 1.48 μmol·L-1. Compound 11 was cytotoxic to K562 while compound 12 was active against K562 and MCF-7 cell lines with the IC50 values of 1.14, 0.88 and 0.65 μmol·L-1, respectively. Compounds 7 and 8 showed antimicrobial activities against Aspergillus fumigatus and Pseudoalteromonas nigrifaciens with the minimum inhibitory concentration (MIC) of 25.00 and 2.00 μg·mL-1, respectively. Compounds 4~6 and 9 also exhibited inhibitions against the H1N1 virus with the IC50 values of 0.04, 0.16, 0.06 and 0.30 mmol·L-1, respectively.
  • 加载中
    1. [1]

      Yotsu, M.; Yamazaki, T.; Meguro, Y.; Endo, A.; Murata, M.; Naoki, H.; Yasumoto, T. Toxicon 1987, 25, 225.  doi: 10.1016/0041-0101(87)90245-5

    2. [2]

      Freeman, E. M. Philos. Trans. R. Soc. Lond. 1904, 196, 1.  doi: 10.1098/rstb.1904.0001

    3. [3]

      Elneketi, M.; Ebrahim, W.; Lin, W.; Gedara, S.; Badria, F.; Saad, H. E.; Lai, D.; Proksch, P. J. Nat. Prod. 2013, 76, 1099.  doi: 10.1021/np4001366

    4. [4]

      Li, L.; Su, W. J. Jimei Univ. (Nat. Sci.) 2000, 80(in Chinese).
       

    5. [5]

      Liu, H.; Zhu, G.; Fan, Y.; Du, Y.; Lan, M.; Xu, Y.; Zhu, W. Front. Chem. 2018. 6, 45.  doi: 10.3389/fchem.2018.00045

    6. [6]

      Zhao, C.; Zhu, T.; Zhu, W. Chin. J. Org. Chem. 2013, 33, 1195(in Chinese).
       

    7. [7]

      Ding, Z. G.; Zhao, J. Y.; Li, M. G.; Huang, R.; Li, Q. M.; Cui, X. L.; Zhu, H. J.; Wen, M. L. J. Nat. Prod. 2012, 75, 1994.  doi: 10.1021/np3004936

    8. [8]

      Wang, Z.; Fu, P.; Liu, P.; Wang, P.; Hou, J.; Li, W.; Zhu, W. Chem. Biodiversity 2013, 10, 281.  doi: 10.1002/cbdv.v10.2

    9. [9]

      Fu, P.; Liu, P.; Qu, H.; Wang, Y.; Chen, D.; Wang, H.; Li, J.; Zhu, W. J. Nat. Prod. 2011, 74, 2219.  doi: 10.1021/np200597m

    10. [10]

      Mei, X.; Wang, L.; Wang, D.; Fan, J.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 2352(in Chinese).
       

    11. [11]

      Wang, C.; Wang, L.; Fan, J.; Sun, K.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 658(in Chinese).
       

    12. [12]

      Du, Y.; Sun, J.; Gong, Q.; Wang, Y.; Fu, P.; Zhu, W. J. Agric. Food Chem. 2018, 66, 1807.  doi: 10.1021/acs.jafc.7b05330

    13. [13]

      Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. J. Heterocycl. Chem. 2009, 46, 1309.  doi: 10.1002/jhet.v46:6

    14. [14]

      Conda-Sheridan, M.; Marler, L.; Park, E. J.; Kondratyuk, T. P.; Jermihov, K.; Mesecar, A. D.; Pezzuto, J. M.; Asolkar, R. N.; Fenical, W.; Cushman M. J. Med. Chem. 2010, 53, 8688.  doi: 10.1021/jm1011066

    15. [15]

      Breitmaier, E.; Hollstein, U. J. Org. Chem. 1976, 41, 2104.  doi: 10.1021/jo00874a008

    16. [16]

      Mateo, A. A.; Horcajada, R.; Groombridge, H. J.; Chudasama, N. M. R.; Motevalli, M.; Utley, J. H.; Wyatt, P. B. Org. Biomol. Chem. 2005, 3, 2832.  doi: 10.1039/b506295k

    17. [17]

      Lu, C. H.; Li, Y. Y.; Wang, H. X.; Wang, B. M.; Shen, Y. M. Drug Discovery Ther. 2013, 7, 101.

    18. [18]

      Cheng, M. J.; Min, T.; Chen, I. S.; Liao, C. C.; Yuan, G. F. J. Chil. Chem. Soc. 2009, 54, 198.

    19. [19]

      Sato, S.; Okusa, N.; Ogawa, A.; Ikenoue, T.; Seki, T.; Tsuji, T. J. Antibiot. 2005, 58, 583.  doi: 10.1038/ja.2005.79

    20. [20]

      Nicoletti, M.; Iorio, M. A. Magn. Reson. Chem. 1986, 24, 221.  doi: 10.1002/(ISSN)1097-458X

    21. [21]

      Lee, H.; Kim, M.; Jun, Y. M.; Kim, B. H.; Lee, B. M. Heteroat. Chem. 2011, 22, 158.  doi: 10.1002/hc.v22.2

    22. [22]

      Salum, M. L.; Robles, C. J.; Errabalsells, R. Org. Lett. 2010, 12, 4808.  doi: 10.1021/ol1019508

    23. [23]

      Li, H. W.; Zhi, X. Y.; Yao, J. C.; Zhou, Y.; Tang, S. K.; Klenk, H. P.; Zhao, J.; Li, W. J. PLoS One 2013, 8, e61528.

    24. [24]

      Ismail, W.; El-Said Mohamed, M.; Wanner, B. L.; Datsenko, K. A.; Eisenreich, W.; Rohdich, F.; Bacher, A.; Fuchs, G. Eur. J. Biochem. 2003, 14, 3047.

    25. [25]

      Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946.  doi: 10.1021/ja105035r

    26. [26]

      Kong, F.; Cheng, Z.; Hao, J.; Wang, C.; Wang, W.; Huang, X.; Zhu, W. RSC Adv. 2015, 5, 68852.  doi: 10.1039/C5RA11185D

    27. [27]

      Xiong, T.; Chen, X.; Wei, H.; Xiao, H. Arch. Med. Sci. 2015, 11, 301.

    28. [28]

      Song, F.; Ren, B.; Chen, C.; Yu, K.; Liu, X.; Zhang, Y.; Yang, N.; He, H.; Liu, X.; Dai, H. Appl. Microbiol. Biotechnol. 2014, 98, 3753.  doi: 10.1007/s00253-013-5409-5

    29. [29]

      Namikoshi, M.; Negishi, R.; Nagai, H.; Dmitrenok, A.; Koba-yashi, H. J. Antibiot. 2003, 56, 755.  doi: 10.7164/antibiotics.56.755

    30. [30]

      Lin, Y.; Wang, L.; Wang, Y.; Wang, W.; Hao, J.; Zhu, W. Chin. J. Org. Chem. 2015, 35, 1955(in Chinese).
       

    31. [31]

      Wallace, J. M.; Söderberg, B. C. G.; Tamariz, J.; Akhmedov, N. G.; Hurley, M. T. Tetrahedron 2008, 64, 9675.  doi: 10.1016/j.tet.2008.07.083

    32. [32]

      Edwards, O. E.; Gillespie, D. C. Tetrahedron Lett. 1966, 7, 4867.  doi: 10.1016/S0040-4039(00)70105-5

    33. [33]

      Agnihotri, V. P. Pathol. Microbiol. 1965, 28, 265.

    34. [34]

      Ying, Y. M.; Zhan, Z. J.; Ding, Z. S.; Shan, W. G. Chem. Nat. Compd. 2011, 47, 541.  doi: 10.1007/s10600-011-9991-4

    35. [35]

      Faler, C. A.; Joullie, M. M. Tetrahedron Lett. 2006, 47, 7229.  doi: 10.1016/j.tetlet.2006.07.136

    36. [36]

      Junek, R.; Kverka, M.; Jandera, A.; Panajotová, V.; Satinský, D.; Machácek, M.; Kuchar, M. Eur. J. Med. Chem. 2009, 44, 332.  doi: 10.1016/j.ejmech.2008.02.030

    37. [37]

      Ergün, B. C.; Coban, T.; Onurdag, F. K.; Banoglu, E. Arch. Pharm. Res. 2011, 34, 1251.  doi: 10.1007/s12272-011-0803-y

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    5. [5]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    16. [16]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(10)
  • Abstract views(835)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return