Citation: Wu Shiwen, Yang Mengquan, Xiao Youli. Synthetic Biology Studies of Monoterpene Indole Alkaloids[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2243-2258. doi: 10.6023/cjoc201806001 shu

Synthetic Biology Studies of Monoterpene Indole Alkaloids

  • Corresponding author: Xiao Youli, ylxiao@sibs.ac.cn
  • Received Date: 1 June 2018
    Revised Date: 4 August 2018
    Available Online: 14 September 2018

    Fund Project: the Science and Technology Commission of Shanghai Municipality 18ZR1447000the Science and Technology Commission of Shanghai Municipality 15JC1400402Project supported by the Science and Technology Commission of Shanghai Municipality (Nos. 18ZR1447000, 15JC1400402)

Figures(13)

  • Monoterpene indole alkaloids (MIAs) are a group of important specialized metabolites that exhibit a broad range of pharmacological activities. However, the contents of MIAs in natural plants are extremely low. It could be produced through advanced synthetic chemistry, but the production scale is very limited, and the further modification of the key scaffold is very difficult. With the full elucidation of MIAs biosynthetic pathway and deeper investigation of biotechnology in synthetic biology, the use of synthetic biology strategies combined with chemical semi-synthesis will be an important development trend for the synthesis of these compounds and their derivatives. Elucidation of MIAs biosynthetic pathway by characterizing involved genes is the prerequisite for synthetic biology. Strictosidine, which was formed by the combination of tryptamine and secologanin, is the key intermediate for MIAs biosynthesis. The discovery of biological parts and research advances of synthetic biology of MIAs based on the upstream biosynthetic pathway, the formation of strictosidine, and downstream biosynthetic pathway, production of divergent MIAs derived from strictosidine over the past three decades are described. This review could provide guidance for further elucidation of other MIAs and promotion of synthetic biology for producing MIAs.
  • 加载中
    1. [1]

      (a) Kuang, X.; Wang, C.; Zou, L.; Zhu, X.; Sun, C. China J. Chin. Mater. Med. 2016, 41, 4129 (in Chinese).
      (匡雪君, 王彩霞, 邹丽秋, 朱孝轩, 孙超, 中国中药杂志, 2016, 41, 4129.)
      (b) Thamm, A. M.; Qu, Y.; De Luca, V. Phytochem. Rev. 2016, 15, 339.
      (c) Facchini, P. J.; De Luca, V. Plant J. 2008, 54, 763.

    2. [2]

      (a) Huang, Y.; Tan, H.; Guo, Z.; Wu, X.; Zhang, Q.; Zhang, L.; Diao, Y. J. Plant Biol. 2016, 59, 203.
      (b) De Luca, V.; Salim, V.; Thamm, A. M. K.; Masada, S. A.; Yu, F. Curr. Opin. Plant Biol. 2014, 19, 35.

    3. [3]

      O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.  doi: 10.1039/b512615k

    4. [4]

      Zhao, D.; Hamilton, J. P.; Pham, G. M.; Crisovan, E.; Wiegert-Rininger, K.; Vaillancourt, B.; DellaPenna, D.; Buell, C. R. Gigascience 2017, 6, 1.

    5. [5]

      Der Heijden, R. V.; Jacobs, D. I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. Curr. Med. Chem. 2004, 11, 607.  doi: 10.2174/0929867043455846

    6. [6]

      Chen, Y.; Zhang, Q.; Huang, Y.; Tan., H.; Diao, Y., Zhang, L. World Sci. Technol.——Mod. Tradit. Chin. Med. Mater. Med. 2016, 18, 1914(in Chinese).  doi: 10.11842/wst.2016.11.013

    7. [7]

      Miettinen, K.; Dong, L.; Navrot, N.; Schneider, T.; Burlat, V.; Pollier, J.; Woittiez, L.; Der Krol, S. V.; Lugan, R.; Ilc, T. Nat. Commun. 2014, 5, 3606.  doi: 10.1038/ncomms4606

    8. [8]

      Kai, G.; Wu, C.; Gen, L.; Zhang, L.; Cui, L.; Ni, X. Phytochem. Rev. 2015, 14, 525.  doi: 10.1007/s11101-015-9405-5

    9. [9]

      (a) Ishikawa, H.; Colby, D. A.; Boger, D. L. J. Am. Chem. Soc. 2008, 130, 420.
      (b) Kuboyama, T.; Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11966.
      (c) Jana, G. K.; Sinha, S. Tetrahedron 2012, 68, 7155.
      (d) Feng, L.; Ren, H.; Xiong, H.; Wang, P.; Wang, L.; Tang, Y. Angew. Chem. 2017, 56, 3055.
      (e) Tokuda, R.; Okamoto, Y.; Koyama, T.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2016, 18, 3490.
      (f) Smith, J. M.; Moreno, J.; Boal, B. W.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 4504.
      (g) Sirasani, G.; Andrade, R. B. Strategies Tactics Org. Synth. 2013, 9, 1.

    10. [10]

      (a) Noble, R. L.; Beer, C. T.; Cutts, J. H.; Ann, N. Y. Acad. Sci. 1958, 76, 882.
      (b) Svoboda, G. H.; Gorman, M.; Barnes, A. J.; Oliver, A. T. J. Pharm. Sci. 1962, 51, 518.

    11. [11]

      (a) Qu, Y.; Easson, M. E.; Simionescu, R.; Hajicek, J.; Thamm, A. M.; Salim, V.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3180.
      (b) Caputi, L.; Franke, J.; Farrow, S. C.; Chung, K.; Payne, R. M. E.; Nguyen, T.-D.; Dang, T.-T. T.; Carqueijeiro, I. S. T.; Koudounas, K.; Bernonville, T. D. d.; Ameyaw, B.; Jones, D. M.; Vieira, I. J. C.; Courdavault, V.; O'Connor, S. E. Science 2018, 360, 1235.

    12. [12]

      (a) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.
      (b) McCoy, E.; Galan, M. C.; O'Connor, S. E. Bioorg. Med. Chem. Lett. 2006, 16, 2475.

    13. [13]

      Okada, K.; Saito, T.; Nakagawa, T.; Kawamukai, M.; Kamiya, Y. Plant Physiol. 2000, 122, 1045.  doi: 10.1104/pp.122.4.1045

    14. [14]

      Iijima, Y.; Gang, D. R.; Fridman, E.; Lewinsohn, E.; Pichersky, E. Plant Physiol. 2004, 134, 370.  doi: 10.1104/pp.103.032946

    15. [15]

      Collu, G.; Unver, N.; Peltenburg-Looman, A. M. G.; van der Heijden, R.; Verpoorte, R.; Memelink, J. FEBS Lett. 2001, 508, 215.  doi: 10.1016/S0014-5793(01)03045-9

    16. [16]

      Asada, K.; Salim, V.; Masadaatsumi, S.; Edmunds, E.; Nagatoshi, M.; Terasaka, K.; Mizukami, H.; De Luca, V. Plant Cell. 2013, 25, 4123.  doi: 10.1105/tpc.113.115154

    17. [17]

      (a) Irmler, S.; Schroder, G.; Stpierre, B.; Crouch, N. P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schroder, J. Plant J. 2000, 24, 797.
      (b) Murata, J.; Roepke, J.; Gordon, H.; De Luca, V. Plant Cell. 2008, 20, 524.

    18. [18]

      Poulsen, C.; Verpoorte, R. Phytochemistry 1991, 30, 377.  doi: 10.1016/0031-9422(91)83688-H

    19. [19]

      Noe, W.; Mollenschott, C.; Berlin, J. Plant Mol. Biol. 1984, 3, 281.  doi: 10.1007/BF00017782

    20. [20]

      (a) Tremer, J. F.; Zenk, M. H. Eur. J. Biochem. 1979, 101, 225.
      (b) Kutchan, T. M.; Hampp, N.; Lottspeich, F.; Beyreuther, K.; Zenk, M. H. FEBS Lett. 1988, 237, 40.
      (c) Stevens, L. H.; Giroud, C.; Pennings, E. J. M.; Verpoorte, R. Phytochemistry 1993, 33, 99.
      (d) de Waal, A.; Meijer, A. H.; Verpoorte, R. Biochem. J. 1995, 306, 571.

    21. [21]

      (a) Irina, G.; Yuri, S.; Ma, X.; Joachim, S. Eur. J. Biochem. 2002, 269, 2204.
      (b) Tatsis, E. C.; Carqueijeiro, I.; de Bernonville, T. D.; Franke, J.; Dang, T.-T. T.; Oudin, A.; Lanoue, A.; Lafontaine, F.; Stavrinides, A. K.; Clastre, M. Nat. Commun. 2017, 8, 316.

    22. [22]

      (a) Levac, D.; Murata, J.; Kim, W. S.; De Luca, V. Plant J. 2008, 53, 225.
      (b) Besseau, S.; Kellner, F.; Lanoue, A.; Thamm, A. M. K.; Salim, V.; Schneider, B.; Geu-Flores, F.; Höouml; fer, R.; Guirimand, G.; Guihur, A.; Oudin, A.; Glevarec, G.; Foureau, E.; Papon, N.; Clastre, M.; Giglioli-Guivarc'h, N.; St-Pierre, B.; Werck-Reichhart, D.; Burlat, V.; De Luca, V.; O'Connor, S. E.; Courdavault, V. Plant Physiol. 2013, 163, 1792.
      (c) Qu, Y.; Easson, M. L. A. E.; Froese, J.; Simionescu, R.; Hudlicky, T.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 6224.
      (d) De Luca, V.; Balsevich, J.; Tyler, R. T.; Kurz, W. G. W. Plant Cell Rep. 1987, 6, 458.
      (e) Liscombe, D. K.; Usera, A. R.; O'Connor, S. E. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18793.
      (f) Benoit, S.-P.; Pierre, L.; Anne-Marie, A.; Vincenzo, D.; Luca, E. Plant J. 1998, 14, 703.
      (g) Vazquez-Flota, F.; De Carolis, E.; Alarco, A.-M.; De Luca, V. Plant Mol. Biol. 1997, 34, 935.

    23. [23]

      Dang, T.-T. T.; Franke, J.; Carqueijeiro, I. S. T.; Langley, C.; Courdavault, V.; O'Connor, S. E. Nat. Chem. Biol. 2018, 14, 760.  doi: 10.1038/s41589-018-0078-4

    24. [24]

      Dogru, E.; Warzecha, H.; Seibel, F.; Haebel, S.; Lottspeich, F.; Stockigt, J. Eur. J. Biochem. 2000, 267, 1397.  doi: 10.1046/j.1432-1327.2000.01136.x

    25. [25]

      (a) Bayer, A.; Ma, X.; Stöouml; ckigt, J. Biorg. Med. Chem. 2004, 12, 2787.
      (b) Ma, X.; Koepke, J.; Bayer, A.; Linhard, V.; Fritzsch, G.; Zhang, B.; Michel, H.; Stöouml; ckigt, J. Biochim. Biophys. Acta 2004, 1701, 129.

    26. [26]

      Geissler, M.; Burghard, M.; Volk, J.; Staniek, A.; Warzecha, H. Planta 2016, 243, 813.  doi: 10.1007/s00425-015-2446-6

    27. [27]

      Ruppert, M.; Woll, J.; Giritch, A.; Genady, E.; Ma, X.; Stöckigt, J. Planta 2005, 222, 888.  doi: 10.1007/s00425-005-0031-0

    28. [28]

      Cázares-Flores, P.; Levac, D.; De Luca, V. Plant J. 2016, 87, 335.  doi: 10.1111/tpj.2016.87.issue-4

    29. [29]

      Dang, T. T.; Franke, J.; Tatsis, E.; O'Connor, S. E. Angew. Chem. 2017, 56, 9440.  doi: 10.1002/anie.v56.32

    30. [30]

      Xia, L.; Ruppert, M.; Wang, M.; Panjikar, S.; Lin, H.; Rajendran, C.; Barleben, L.; Stöckigt, J. ACS Chem. Biol. 2012, 7, 226.  doi: 10.1021/cb200267w

    31. [31]

      Carqueijeiro, I.; Dugé de Bernonville, T.; Lanoue, A.; Dang, T. T.; Teijaro, C. N.; Paetz, C.; Billet, K.; Mosquera, A.; Oudin, A.; Besseau, S. Plant J. 2018, 94, 469.  doi: 10.1111/tpj.2018.94.issue-3

    32. [32]

      Carqueijeiro, I. T.; Brown, S.; Chung, K.; Dang, T.-T. T.; Walia, M.; Besseau, S.; Dugéde Bernonville, T.; Oudin, A.; Lanoue, A.; Billet, K.; Munsch, T.; Koudounas, K.; Melin, C.; Godon, C.; Razafimandimby, B.; de Craene, J.-O.; Glévarec, G.; Marc, J.; Giglioli-Guivarc'h, N.; Clastre, M.; St-Pierre, B.; Papon, N.; Andrade, R. B.; O'Connor, S.; Courdavault, V. Plant Physiol. 2018.

    33. [33]

      Kellner, F.; Geu-Flores, F.; Sherden, N. H.; Brown, S.; Foureau, E.; Courdavault, V.; O'Connor, S. E. Chem. Commun. 2015, 51, 7626.  doi: 10.1039/C5CC01309G

    34. [34]

      Sadre, R.; Magallanes-Lundback, M.; Pradhan, S.; Salim, V.; Mesberg, A.; Jones, A. D.; DellaPenna, D. Plant Cell. 2016, 28, 1926.  doi: 10.1105/tpc.16.00193

    35. [35]

      Salim, V.; Jones, A. D.; DellaPenna, D. Plant J. 2018, 95, 112.  doi: 10.1111/tpj.2018.95.issue-1

    36. [36]

      Stevens, L. H.; Giroud, C.; Pennings, E. J. M.; Verpoorte, R. Phytochemistry. 1993, 33, 99.  doi: 10.1016/0031-9422(93)85403-E

    37. [37]

      Isaac, J. E.; Robins, R. J.; Rhodes, M. J. C. Phytochemistry 1987, 26, 393.  doi: 10.1016/S0031-9422(00)81420-X

    38. [38]

      Zhou, Y.; Xiao, Y. Acta Chim. Sinica 2018, 76, 177(in Chinese).  doi: 10.3866/PKU.WHXB201707121

    39. [39]

      (a) Ogawa-Ohnishi, M.; Matsushita, W.; Matsubayashi, Y. Nat. Chem. Biol. 2013, 9, 726.
      (b) Zhou, Y.; Li, W.; You, W.; Di, Z.; Wang, M.; Zhou, H.; Yuan, S.; Wong, N.-K.; Xiao, Y. Chem. Commun. 2018, 54, 7179.
      (c) Li, W.; Zhou, Y.; You, W.; Yang, M.; Ma, Y.; Wang, M.; Wang, Y.; Yuan, S.; Xiao, Y. ACS Chem. Biol. 2018, 13, 1944.

    40. [40]

      Purnick, P. E.; Weiss, R. Nat. Rev. Mol. Cell Biol. 2009, 10, 410.
       

    41. [41]

      (a) Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C. D. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E3922.
      (b) Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.; Tai, A.; Main, A.; Eng, D. Nature 2013, 496, 528.
      (c) Ehrenworth, A. M.; Peralta-Yahya, P. Nat. Chem. Biol. 2017, 13, 249.
      (d) Li, S.; Li, Y.; Smolke, C. D. Nat. Chem. 2018, 10, 395.
      (e) Farhi, M.; Marhevka, E.; Ben-Ari, J.; Algamas-Dimantov, A.; Liang, Z.; Zeevi, V.; Edelbaum, O.; Spitzer-Rimon, B.; Abeliovich, H.; Schwartz, B. Nat. Biotechnol. 2011, 29, 1072.
      (f) Fuentes, P.; Zhou, F.; Erban, A.; Karcher, D.; Kopka, J.; Bock, R. eLife 2016, 5, e13664.
      (g) Malhotra, K.; Subramaniyan, M.; Rawat, K.; Kalamuddin, M.; Qureshi, M. I.; Malhotra, P.; Mohmmed, A.; Cornish, K.; Daniell, H.; Kumar, S. Mol. Plant. 2016, 9, 1464.
      (h) Reed, J.; Stephenson, M. J.; Miettinen, K.; Brouwer, B.; Leveau, A.; Brett, P.; Goss, R. J. M.; Goossens, A.; Connell, M. A. O.; Osbourn, A. Metab. Eng. 2017, 42, 185.

    42. [42]

      Qu, Y.; Thamm, A. M.; Czerwinski, M.; Masada, S.; Kim, K. H.; Jones, G.; Liang, P.; De Luca, V. Planta 2018, 247, 625.  doi: 10.1007/s00425-017-2812-7

    43. [43]

      (a) Hughes, E. H.; Hong, S.-B.; Gibson, S. I.; Shanks, J. V.; San, K. Biotechnol. Bioeng. 2004, 86, 718.
      (b) Hughes, E. H.; Hong, S.-B.; Gibson, S. I.; Shanks, J. V.; San, K. Metab. Eng. 2004, 6, 268.

    44. [44]

      Hong, S. B.; Peebles, C. A. M.; Shanks, J. V.; San, K.; Gibson, S. I. J. Biotechnol. 2006, 122, 28.
       

    45. [45]

      Saiman, M. Z.; Miettinen, K.; Mustafa, N. R.; Choi, Y. H.; Verpoorte, R.; Schulte, A. E. Plant Cell, Tissues Organ. Cult. 2018, 134, 53.

    46. [46]

      Ritala, A.; Dong, L.; Imseng, N.; Seppänen-Laakso, T.; Vasilev, N.; van der Krol, S.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brändli, J. J. Biotechnol. 2014, 176, 20.  doi: 10.1016/j.jbiotec.2014.01.031

    47. [47]

      Kumar, S. R.; Shilpashree, H. B.; Nagegowda, D. A. Front. Plant Sci. 2018, 9, 942.  doi: 10.3389/fpls.2018.00942

    48. [48]

      Songstad, D. D.; De Luca, V.; Brisson, N.; Kurz, W. G.; Nessler, C. L. Plant Physiol. 1990, 94, 1410.  doi: 10.1104/pp.94.3.1410

    49. [49]

      Li, Q.; Fiore, S. D.; Fischer, R.; Wang, M. Bot. Bull. Acad. Sin. 2003, 44, 193.

    50. [50]

      Whitmer, S.; van der Heijden, R.; Verpoorte, R. J. Biotechnol. 2002, 96, 193.

    51. [51]

      Chang, K.; Qiu, F.; Chen, M.; Zeng, L.; Liu, X.; Yang, C.; Lan, X.; Wang, Q.; Liao, Z. Biotechnol. Appl. Biochem. 2014, 61, 249.

    52. [52]

      Canel, C.; Lopescardoso, M. I.; Whitmer, S.; Der Fits, L. V.; Pasquali, G.; Der Heijden, R. V.; Hoge, J. H. C.; Verpoorte, R. Planta 1998, 205, 414.  doi: 10.1007/s004250050338

    53. [53]

      Whitmer, S.; Canel, C.; Hallard, D.; Goncalves, C.; Verpoorte, R. Plant Physiol. 1998, 116, 853.  doi: 10.1104/pp.116.2.853

    54. [54]

      (a) Whitmer, S. Aspects of Terpenoid Indole Alkaloid Formation by Transgenic Cell Lines of Catharanthus Roseus Over-expressing Tryptophan Decarboxylase and Strictosidine Synthase, Leiden University, 1999.
      (b) Whitmer, S.; van der Heijden, R.; Verpoorte, R. Plant Cell, Tissues Organ. Cult. 2002, 69, 85.

    55. [55]

      Facchini, P. J.; Huber-Allanach, K. L.; Tari, L. W. Phytochemistry 2000, 54, 121.  doi: 10.1016/S0031-9422(00)00050-9

    56. [56]

      Verma, P.; Sharma, A.; Khan, S. A.; Shanker, K.; Mathur, A. K. Protoplasma 2015, 252, 373.  doi: 10.1007/s00709-014-0685-1

    57. [57]

      Geerlings, A.; Redondo, F.; Contin, A.; Memelink, J.; van der Heijden, R.; Verpoorte, R. Appl. Microbiol. Biotechnol. 2001, 56, 420.  doi: 10.1007/s002530100663

    58. [58]

      Hallard, D.; van der Heijden, R.; Verpoorte, R.; Cardoso, M. I. L.; Pasquali, G.; Memelink, J.; Hoge, J. H. C. Plant Cell Rep. 1997, 17, 50.  doi: 10.1007/s002990050350

    59. [59]

      Leech, M. J.; May, K.; Hallard, D.; Verpoorte, R.; De Luca, V.; Christou, P. Plant Mol. Biol. 1998, 38, 765.  doi: 10.1023/A:1006000229229

    60. [60]

      Geerlings, A.; Hallard, D.; Martinez Caballero, A.; Lopes Cardoso, I.; van der Heijden, R.; Verpoorte, R. Plant Cell Rep. 1999, 19, 191.  doi: 10.1007/s002990050732

    61. [61]

      Cui, L.; Ni, X.; Ji, Q.; Teng, X.; Yang, Y.; Wu, C.; Zekria, D.; Zhang, D.; Kai, G. Sci. Rep. 2015, 5, 8227.  doi: 10.1038/srep08227

    62. [62]

      Brown, S.; Clastre, M.; Courdavault, V.; O'Connor, S. E. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3205.  doi: 10.1073/pnas.1423555112

    63. [63]

      Magnotta, M.; Murata, J.; Chen, J.; De Luca, V. Phytochemistry 2007, 68, 1922.  doi: 10.1016/j.phytochem.2007.04.037

    64. [64]

      van der Fits, L.; Memelink, J. Science 2000, 289, 295.  doi: 10.1126/science.289.5477.295

    65. [65]

      Peebles, C. A.; Hughes, E. H.; Shanks, J. V.; San, K.-Y. Metab. Eng. 2009, 11, 76.  doi: 10.1016/j.ymben.2008.09.002

    66. [66]

      Ni, X.; Wen, S.; Wang, W.; Wang, X.; Xu, H.; Kai, G. J. Appl. Pharm. Sci. 2011, 1, 85.

    67. [67]

      Li, C. Y.; Leopold, A. L.; Sander, G. W.; Shanks, J. V.; Zhao, L.; Gibson, S. I. BMC Plant Biol. 2013, 13, 155.  doi: 10.1186/1471-2229-13-155

    68. [68]

      Schweizer, F.; Colinas, M.; Pollier, J.; Van Moerkercke, A.; Bossche, R. V.; de Clercq, R.; Goossens, A. Metab. Eng. 2018, 48, 150.  doi: 10.1016/j.ymben.2018.05.016

    69. [69]

      Raina, S. K.; Wankhede, D. P.; Jaggi, M.; Singh, P.; Jalmi, S. K.; Raghuram, B.; Sheikh, A. H.; Sinha, A. K. BMC Plant Biol. 2012, 12, 134.  doi: 10.1186/1471-2229-12-134

    70. [70]

      Van Moerkercke, A.; Steensma, P.; Schweizer, F.; Pollier, J.; Gariboldi, I.; Payne, R.; Bossche, R. V.; Miettinen, K.; Espoz, J.; Purnama, P. C. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8130.  doi: 10.1073/pnas.1504951112

    71. [71]

      Sun, L; Li, S; Wang, F; Xin, F. Biotechnol. Bull. 2017, 33, 64(in Chinese).
       

    72. [72]

      (a) Arlen, P. A.; Falconer, R.; Cherukumilli, S.; Cole, A.; Cole, A. M.; Oishi, K. K.; Daniell, H. Plant Biotechnol. J. 2007, 5, 511.
      (b) Ikram, N. K. B. K.; Zhan, X.; Pan, X.-W.; King, B. C.; Simonsen, H. T. Front. Plant Sci. 2015, 6, 129.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    3. [3]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    4. [4]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    18. [18]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(324)
  • Abstract views(10774)
  • HTML views(4035)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return