Citation: Zhao Qianyi, Liang Yuan, Xu Ting, Dou Ting, Zhang Jie, Chen Xuenian. Synthesis of Osmium Complexes with Bidentate Nitrogen-Based Ligands and Their Application in Catalytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3286-3295. doi: 10.6023/cjoc201805050 shu

Synthesis of Osmium Complexes with Bidentate Nitrogen-Based Ligands and Their Application in Catalytic Dehydrogenation of Ammonia Borane

  • Corresponding author: Zhao Qianyi, qyzhao@htu.edu.cn Chen Xuenian, xnchen@htu.edu.cn
  • Received Date: 28 May 2018
    Revised Date: 10 July 2018
    Available Online: 14 December 2018

    Fund Project: the National Natural Science Foundation of China 21503070the National Natural Science Foundation of China 21501048the National Natural Science Foundation of China 21571052the Key Science and Technology Project of Henan Province 182102210377the National Natural Science Foundation of China 21771057Project supported by the National Natural Science Foundation of China (Nos. 21501048, 21503070, 21571052, 21771057) and the Key Science and Technology Project of Henan Province (No.182102210377)

Figures(7)

  • Reactions of OsCl2(PPh3)3 (1) with bidentate nitrogen-based ligands at room temperature led to the formation of complexes OsCl2(PPh3)2(diamine) (2~6) and OsCl2(PPh3)2(Phen*) (7~11). Complexes 2~11 showed high activity in the catalytic dehydrogenation of ammonia borane at 60℃, in THF/DME (V:V=1:1.6) solution with the catalyst loading of 5 mol%. Among all the catalysts, compound 4 demonstrated the highest catalytic activity, which represents the most efficient osmium catalyst in catalytic dehydrogenation of ammonia borane until now.
  • 加载中
    1. [1]

      Rand, D. A. J.; Dell, R. M. Hydrogen Energy: Challenges and Prospects, Royal Society of Chemistry, Cambridge, UK, 2008.

    2. [2]

      (a) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698.
      (b) Dalebrook, A. F.; Gan, W.; Grasemann, M.; Moret, S.; Laurenczy, G. Chem. Commun. 2013, 49, 8735. 

    3. [3]

      (a) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
      (b) Zhang, X.; Kam, L.; Trerise, R.; Williams, T. J. Acc. Chem. Res. 2017, 50, 86. 

    4. [4]

      (a) Tang, Z.; Chen, X.; Chen, H.; Wu, L.; Yu, X. Angew. Chem., Int. Ed. 2013, 52, 5832.
      (b) Tang, Z.; Chen, H.; Chen, X.; Wu, L.; Yu, X. J. Am. Chem. Soc. 2012, 134, 5464. 

    5. [5]

      Wang, K.; Zhang, J.-G.; Man, T.-T.; Wu, M.; Chen, C.-C. Chem.-Asian. J. 2013, 8, 1076.  doi: 10.1002/asia.201201241

    6. [6]

      (a) Appelt, C.; Chris Slootweg, J.; Lammertsma, K.; Uhl, W. Angew. Chem., Int. Ed. 2013, 52, 4256.
      (b) Kalidindi, S. B.; Joseph, J.; Jagirdar, B. R. Energ. Environ. Sci. 2009, 2, 1274. 

    7. [7]

      (a) Alcaraz, G.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2010, 49, 7170.
      (b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
      (c) Rossin, A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848. 

    8. [8]

      (a) Esteruelas, M. A.; López, A. M.; Mora, M. ACS Catal. 2015, 5, 187; (b) Esteruelas, M. A.; Fernández, I.; López, A. M. Organometallics 2014, 33, 1104. 

    9. [9]

      (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Döbler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller, M. J. Am. Chem. Soc. 2000, 122, 10289.
      (c) Döbler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller, M. J. Organomet. Chem. 2001, 621, 70. (d) Heravi, M. M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T. B. Tetrahedron: Asymmetry 2017, 28, 987. 

    10. [10]

      (a) Esteruelas, M. A.; Honczek, N.; Oliván, M.; Onate, E.; Valencia, M. Organometallics 2011, 30, 2468.
      (b) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Organometallics 2011, 30, 3479.
      (c) Buil, M. L.; Esteruelas, M. A.; Herrero, J.; Izquierdo, S.; Pastor, I. M.; Yus, M. ACS Catal. 2013, 3, 2072.
      (d) Chelucci, G.; Baldino, S.; Baratta, W. Acc. Chem. Res. 2015, 48, 363.
      (e) Bolaño, T.; Esteruelas, M. A.; Gay, M. P.; Oñate, E.; Pastor, I. M.; Yus, M. Organometallics 2015, 34, 3902.
      (f) Barbato, C.; Baldino, S.; Ballico, M.; Figliolia, M.; Magnolia, S.; Siega, K.; Herdtweck, E.; Strazzolini, P.; Chelucci, G.; Baratta, W. Organometallics 2018, 37, 65.. 

    11. [11]

      Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.  doi: 10.1021/ja512389y

    12. [12]

      Buil, M. L.; Esteruelas, M. A.; Gay, M. P. Organometallics 2018, 37, 603.  doi: 10.1021/acs.organomet.7b00906

    13. [13]

      (a) Baratta, W.; Bossi, G.; Putignano, E.; Rigo, P. Chem.-Eur. J. 2011, 17, 3474.
      (b) Chelucci, G.; Baldino, S.; Baratta, W. Coord. Chem. Rev. 2015, 300, 29. 

    14. [14]

      Baker, R. T.; Gordon, J. C.; Hamilton, C. W. J. Am. Chem. Soc. 2012, 134, 5598.  doi: 10.1021/ja210542r

    15. [15]

      When the article was prepared, a similar synthetic method for complex 2 was reported by Baratta. Please see Ref.[10f] for details.

    16. [16]

      Nascimento, R. D.; Silva, A. K.; Lião, L. M. J. Mol. Struct. 2018, 1151, 277.  doi: 10.1016/j.molstruc.2017.09.044

    17. [17]

      Hoffman, P. R.; Caulton, K. G. J. Am. Chem. Soc. 1975, 97, 4221.  doi: 10.1021/ja00848a012

    18. [18]

      (a) Lay, P. A.; Sargeson, A. M.; Skelton, B, W. J. Am. Chem. Soc. 1982, 104, 6161.
      (b) Clapham, S. E.; Morris, R. H. Organometallics 2005, 24, 479.
      (c) McQueen, J. S.; Nagao, N.; Eberspacher, T. Inorg. Chem. 2003, 42, 3815.
      (d) Ettner, N.; Hillen, W.; Ellestad, G. A. J. Am. Chem. Soc. 1993, 115, 2546.
      (e) Peacock, A. F. A.; Habtemariam, A.; Moggach, S. A. Inorg. Chem. 2007, 46, 4049.
      (f) Gong, L.; Lin, Y.; Wen, T. B. Organometallics 2009, 28, 1101.
      (g) Martínez-Peña, F.; Pizarro, A. M. Chem.-Eur. J. 2017, 23, 16231. 

    19. [19]

      Luman, C. R.; Castellano, F. N. In Comprehensive Coordination Chemistry Ⅱ, 2nd ed., Vol. 1, Eds.: Meyer, T. J.; McCleverty, J. A., Elsevier Ltd., Pergamon, 2003, p. 25. 

    20. [20]

      (a) Akerboom, S.; van den Elshout, J. J. M. H.; Mutikainen, I. Eur. J. Inorg. Chem. 2013, 2013, 6137.
      (b) Nakagawa, A.; Ito, A.; Sakuda, E. Eur. J. Inorg. Chem. 2017, 3794.
      (c) Glazer, E. C.; Magde, D.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 8544. 

    21. [21]

      Sjögren, M. P. T.; Frisell, H. B. Organometallics 1997, 16, 942.  doi: 10.1021/om960260i

    22. [22]

      (a) Zheng, A.-X.; Si, J.; Tang, X.-Y.; Miao, L.-L.; Yu, M.; Hou, K.-P.; Wang, F.; Li, H.-X.; Lang, J.-P. Inorg. Chem. 2012, 51, 10262.
      (b) Zheng, A.-X.; Wang, H.-F.; Lü, C.-N.; Ren, Z.-G.; Li, H.-X.; Lang, J.-P. Dalton Trans. 2012, 41, 558.
      (c) Li, F.-L.; Yang, S.-P.; Zhang, W.-H.; Liu, Q.; Yu, H.; Chen, J.-X.; Lang, J.-P. ChemistrySelect 2016, 1, 2979. 

    23. [23]

      (a) Liu, B.; Zhao, Q.; Wang, H. Chin. J. Chem. 2012, 30, 2158.
      (b) Nakamura, A.; Sato, T.; Kuroda, R. Chem. Commun. 2004, 2858.
      (c) Carlson, B.; Phelan, G. D.; Kaminsky, W. J. Am. Chem. Soc. 2002, 124, 14162.
      (d) Cheng, Y. K.; Cheung, J.; Che, K.-K.; Chi, M. Chem. Commun. 1997, 623.
      (e) Carlson, B.; Phelan, G. D.; Benedict, J. B. Inorg. Chim. Acta 2006, 359, 1093. 

    24. [24]

      Bhattacharya, P.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136, 11153.  doi: 10.1021/ja5058423

    25. [25]

      Duman, S.; Özkar, S. Int. J. Hydrogen Energy 2013, 38, 180.  doi: 10.1016/j.ijhydene.2012.10.041

    26. [26]

      (a) Rossin, A.; Rossi, A.; Peruzzini, M. ChemPlusChem 2014, 79, 1316.
      (b) Metters, O. J.; Chapman, A. M.; Robertson, A. P. M.; Woodall, C. H.; Gates, P. J.; Wass, D. F.; Manners, I. Chem. Commun. 2014, 50, 12146.
      (c) Robertson, A. P. M.; Leitao, E. M.; Jurca, T.; Haddow, M. F.; Helten, H.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2013, 135, 12670.
      (d) Pons, V.; Baker, R. T. Angew. Chem., Int. Ed. 2008, 47, 9600.
      (e) Staubitz, A.; Presa Soto, A.; Manners, I. Angew. Chem., Int. Ed. 2008, 47, 6212. 

    27. [27]

      (a) Kalviri, H. A.; Gärtner, F.; Ye, G. Chem. Sci. 2015, 6, 618. (b) Shaw, W. J.; Linehan, J. C.; Szymczak, N. K. Angew. Chem., Int. Ed. 2008, 47, 7493. 

    28. [28]

      Sayalero, S.; Pericas, M. A. Synlett 2006, 2585.
       

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    11. [11]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    12. [12]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(2)
  • Abstract views(1252)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return