Citation: Yang Jinchuang, Li Guosong, Lü Chengwei, An Yue, Gao Shuang. Oxidation Kinetics Resolution of Racemic Aromatic Sulfoxides by Chiral Porphyrin-Inspired N4 Ligand with Manganese Complex[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 3070-3077. doi: 10.6023/cjoc201805034 shu

Oxidation Kinetics Resolution of Racemic Aromatic Sulfoxides by Chiral Porphyrin-Inspired N4 Ligand with Manganese Complex

  • Corresponding author: An Yue, anyue_11@163.com Gao Shuang, sgao@dicp.ac.cn
  • Received Date: 16 May 2018
    Revised Date: 19 June 2018
    Available Online: 5 November 2018

    Fund Project: the National Natural Science Foundation of China 21403100the Education Research Program of the Education Department of Liaoning Province L2014421Project supported by the National Natural Science Foundation of China (No. 21403100) and the Education Research Program of the Education Department of Liaoning Province (No. L2014421)

Figures(2)

  • Oxidative kinetics resolution of racemic aromatic sulfoxide was studied by using chiral porphyrin-inspired N4 ligands and manganese in situ complex as catalyst, environment-friendly H2O2 as oxidant and adamantanecarboxylic acid as additive. The arylalkyl and arylbenzyl sulfoxide substrates were extended by this catalytic system. A maximum yield of chiral sulfoxide was 40% and the enantioselectivity was 100%. In the meantime, the yield of sulfone a further oxidation products of sulfoxide, was up to 72%. It was found that the catalytic oxidation system is more prone to electron-rich sulfoxide through the competition experiment between electron-rich sulfoxide and electron-deficient sulfoxide substrates. In addition, the success of gram-scale oxidation kinetic resolution also shows that this method has a certain practical value in methodology.
  • 加载中
    1. [1]

      (a) Kiełbasiński, P.; Mikołajczyk, M.; Zwanenburg, B.; De Laet, R. C. Phosphorus, Sulfur, Silicon Related Elem. 1994, 95, 495.
      (b) Kwiatkowska, M.; Janicki, I.; Kiełbasiński, P. J. Mol. Catal. B: Enzym. 2015, 118, 23.

    2. [2]

      Pitchen, P.; Dunach, E.; Deshmukh, M.; Kagan, H. J. Am. Chem. Soc. 1984, 106, 8188.  doi: 10.1021/ja00338a030

    3. [3]

    4. [4]

      Jiang, B.; Huang, H.; Luo, J.; Li, Z. Y. Chin. J. Org. Chem. 2005, 25, 1542(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.12.004
       

    5. [5]

    6. [6]

      (a) Fernández, I; Khiar, N. Chem. Rev. 2003, 103, 3651.
      (b) Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 1999, 121, 7411.
      (c) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970.
      (d) Mariz, R.; Luan, X.; Gatti, M.; Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008, 130, 2172.
      (e) Bürgi, J. J.; Mariz, R.; Gatti, M.; Drinkel, E.; Luan, X.; Blumentritt, S.; Linden, A.; Dorta, R. Angew. Chem., Int. Ed. 2009, 48, 2768.
      (f) Carreno, M. C.; Des Mazery, R.; Urbano, A.; Colobert, F.; Solladié, G. Org. Lett. 2004, 6, 297.

    7. [7]

      (a) Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984, 325.
      (b) Furia, F. D.; Modene, G.; Seraglia, R. Synthesis 1984, 15, 325.
      (c) Ligtenbarg, A. G.; Hage, R.; Feringa, B. L. Coord. Chem. Rev. 2003, 237, 89.

    8. [8]

      (a) Sturala, J.; Bohacova, S.; Chudoba, J.; Metelkova, R.; Cibulka, R. J. Org. Chem. 2015, 80, 2676.
      (b) Hassanpour, A.; Acuña-Parés, F.; Luis, J. M.; Cusso, O.; Morales, d. l. R. S.; Campos-Martín, J. M.; Fierro, J. L.; Costas, M.; Lloret-Fillol, J.; Mas-Ballesté, R. Chem. Commun. 2015, 51, 14992.
      (c) Leow, W. R.; Ng, W. K.; Peng, T.; Liu, X.; Li, B.; Shi, W.; Lum, Y.; Wang, X.; Lang, X.; Li, S. J. Am. Chem. Soc. 2016.
      (d) Zhao, L.; Zhang, H.; Wang, Y. J. Org. Chem. 2016, 81, 129.
      (e) Chatterjee, S.; Paine, T. K. Angew. Chem. 2016, 128, 7848.

    9. [9]

      (a) Rioz-Martínez, A.; de Gonzalo, G.; Pazmiño, D. E. T.; Fraaije, M. W.; Gotor, V. Eur. J. Org. Chem. 2010, 6409.
      (b) Drago, C.; Caggiano, L.; Jackson, R. F. Angew. Chem. 2005, 117, 7387.
      (c) Boruah, J. J.; Ahmed, K.; Das, S.; Gogoi, S. R.; Saikia, G.; Sharma, M.; Islam, N. S. Mol. Catal. A: Chem. 2016, 425, 21.

    10. [10]

      (a) Xu, L.; Cheng, J.; Trudell, M. L. J. Org. Chem. 2003, 68, 5388.
      (b) Fukuda, N.; Ikemoto, T. J. Org. Chem. 2010, 75, 4629.
      (c) Zhao, W.; Yang, C.; Cheng, Z.; Zhang, Z. Green Chem. 2016, 18, 995.
      (d) Fareghi-Alamdari, R.; Zekri, N.; Moghadam, A. J.; Farsani, M. R. Catal. Commun. 2017, 98.
      (e) Shyam, P.; Jang, H. Y. J. Org. Chem. 2017, 82.

    11. [11]

      Bryliakov, K. P.; Talsi, E. P. Eur. J. Org. Chem. 2008, 3369.

    12. [12]

      Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H. J. Org. Chem. 2004, 69, 8500.  doi: 10.1021/jo040221d

    13. [13]

      Bryliakov, K. P.; Talsi, E. P. Chem. Eur. J. 2007, 13, 8045.  doi: 10.1002/(ISSN)1521-3765

    14. [14]

      Yamaguchi, T.; Matsumoto, K.; Saito, B.; Katsuki, T. Angew. Chem. 2007, 119, 4813.  doi: 10.1002/(ISSN)1521-3757

    15. [15]

      O'Mahony, G. E.; Ford, A.; Maguire, A. R. J. Org. Chem. 2012, 77, 3288.  doi: 10.1021/jo2026178

    16. [16]

      (a) Jia, X.; Li, X.; Xu, L.; Li, Y.; Shi, Q.; Au-Yeung, T. T. L.; Yip, C.; Yao, X.; Chan, A. S. Adv. Synth. Catal. 2004, 346, 723.
      (b) Zeng, Q.; Wang, H.; Wang, T.; Cai, Y.; Weng, W.; Zhao, Y. Adv. Synth. Catal. 2005, 347, 1933.

    17. [17]

      Dai, W.; Li, J.; Li, G.; Yang, H.; Wang, L.; Gao, S. Org. Lett. 2013, 15, 4138.  doi: 10.1021/ol401812h

    18. [18]

      (a) Dai, W.; Li, J.; Chen, B.; Li, G.; Lü, Y.; Wang, L.; Gao, S. Org. Lett. 2013, 15, 5658.
      (b) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980.

    19. [19]

      Yang, J.; Wang, L.; Lv, Y.; Li, N.; An, Y.; Gao, S. Tetrahedron Lett. 2018, 59, 156.  doi: 10.1016/j.tetlet.2017.12.012

    20. [20]

      (a) O'Mahony, G. E.; Ford, A.; Maguire, A. R. J. Org. Chem. 2012, 77, 3288.
      (b) Le, M. P.; Simonneaux, G. Chem. Comm. 2011, 47, 6957.
      (c) Kelly, P.; Lawrence, S. E.; Maguire, A. R. Synlett 2007, 38, 1501.

    21. [21]

      (a) Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. Synthesis 2016, 49, 917.
      (b) Yang, C.; Jin, Q.; Zhang, H.; Liao, J.; Zhu, J.; Yu, B.; Deng, J. Green Chem. 2009, 11, 1401.
      (c) Jereb, M. Green Chem. 2012, 44, 3047.

    22. [22]

      (a) Legros, J.; Bolm, C. Angew. Chem. 2004, 42, 5487.
      (b) Legros, J.; Bolm, C. Chemistry 2005, 11, 1086.
      (c) Legros, J.; Bolm, C. Angew. Chem. 2003, 115, 5487.

    23. [23]

      Meckler, H.; Herr, R. J. Org. Process Res. Dev. 2012, 16, 550.  doi: 10.1021/op2002744

    24. [24]

      (a) Sonopo, M. S.; Pillay, A.; Chibale, K.; Marjanovic-Painter, B.; Donini, C.; Zeevaart, J. R. J. Labelled Compd. Radiopharm. 2016, 59, 680.
      (b) Emrick, D. D.; Truce, W. E. J. Org. Chem. 1960, 25, 1103.
      (c) Gilman, H.; Martin, G. A. J. Am. Chem. Soc. 2002, 74, 5317.

    25. [25]

      Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2007, 129, 8940.  doi: 10.1021/ja071916+

    26. [26]

      Hanson, P.; Hendrickx, R. A.; Smith, J. R. Org. Biomol. Chem. 2008, 6, 745.  doi: 10.1039/b714707d

    27. [27]

      Nodiff, E. A.; Lipschutz, S.; Craig, P. N.; Gordon, M. J. Org. Chem. 1960, 25, 60.  doi: 10.1021/jo01071a018

    28. [28]

      Hanson, P.; Hendrickx, R. A.; Smith, J. R. Org. Biomol. Chem. 2008, 6, 745.  doi: 10.1039/b714707d

    29. [29]

      Shaabani, A.; Soleimani, E. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 2475.  doi: 10.1080/10426500600754737

    30. [30]

      Shaabani, A.; Teimouri, F.; Lee, D. G. Synth. Commun. 2003, 33, 1057.  doi: 10.1081/SCC-120016369

    31. [31]

      Supale, A. R.; Gokavi, G. S. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 725.  doi: 10.1080/10426500902922958

    32. [32]

      Greger, J. G.; Yoonmiller, S. J. P.; Bechtold, N. R.; Flewelling, S. A.; Macdonald, J. P.; Downey, C. R.; Cohen, E. A.; Pelkey, E. T. J. Org. Chem. 2012, 43, 8203.
       

    33. [33]

      Liao, S.; List, B. Adv. Synth. Catal. 2012, 354, 2363.  doi: 10.1002/adsc.v354.13

    34. [34]

      Ellervik, U.; Jacobsson, M.; Ohlsson, J. Tetrahedron 2005, 61, 2421.  doi: 10.1016/j.tet.2005.01.015

    35. [35]

      Gogoi, S.; Boruah, J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K.; Islam, N. Catal. Sci. Technol. 2014, 5, 595.

  • 加载中
    1. [1]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    2. [2]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    14. [14]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(4)
  • Abstract views(1000)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return