Citation: Wang Zhipeng, Li Man, Li Hui, Liu Zhihua, Li Ying, Zheng Ji-Shen. Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2400-2411. doi: 10.6023/cjoc201804046 shu

Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins

  • Corresponding author: Wang Zhipeng, hipeng.wang@chem.tamu.edu Zheng Ji-Shen, jszheng@ustc.edu.cn
  • Received Date: 28 April 2018
    Revised Date: 19 May 2018
    Available Online: 7 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. U1732161), the Science and Technological Fund of Anhui Province for Outstanding Youth (No. 1808085J04) and the Innovative Program Development Foundation of Hefei Center Physical Science and Technology (No. 2017FXCX002)the National Natural Science Foundation of China U1732161the Innovative Program Development Foundation of Hefei Center Physical Science and Technology 2017FXCX002the Science and Technological Fund of Anhui Province for Outstanding Youth 1808085J04

Figures(9)

  • The study of native proteins with post-translational modifications (PTMs) is one of the main fields of epigenetics. The discovery of novel PTM models and their vital regulatory role for chromatin structure and gene transcription have been one of the current research focuses drawing attention of biologists especially in recent years. However, we still lack efficient strategies for the preparation of sufficient amount of native proteins with certain PTMs. The currently existing chemical biology methods are reviewed, and their advantages and disadvantages are compared, including bioorthogonal reaction technique, non-canonical amino acid incorporation, etc. Furthermore, the draft will mainly focus on the application of bioorthogonal reactions on unnatural functional groups for the incorporation of lysine PTMs.
  • 加载中
    1. [1]

      Kouzarides, T. Cell 2007, 128, 693.  doi: 10.1016/j.cell.2007.02.005

    2. [2]

      Li, Y.; Barløse, C.; Jørgensen, J.; Carlsen, B. D. Jørgensen, K. A. Chem.-Eur. J. 2017, 23, 38.  doi: 10.1002/chem.201604310

    3. [3]

      Dann, G. P.; Liszczak, G. P.; Bagert, J. D.; Müller, M. M.; Nguyen, U. T.; Wojcik, F.; Brown, Z. Z.; Bos, J.; Panchenko, T.; Pihl, R.; Muir, T. W. Nature 2017, 548, 607.  doi: 10.1038/nature23671

    4. [4]

      Latham, J. A.; Dent, S. Y. Nat. Struct. Mol. Biol. 2007, 14, 1017.  doi: 10.1038/nsmb1307

    5. [5]

      Hamamoto, R.; Saloura, V.; Nakamura, Y. Nat. Rev. Cancer 2015, 15, 110.  doi: 10.1038/nrc3884

    6. [6]

      Greer, E. L.; Shi, Y. Nat. Rev. Genet. 2012, 13, 343.
       

    7. [7]

      Wang, Z. A.; Cheng, N. Y.; Liang, Y. Y.; Ma, X. Y. Univ. Chem. 2017, 32, 41(in Chinese).
       

    8. [8]

      Chuikov, S.; Kurash, J. K.; Wilson, J. R.; Xiao, B.; Justin, N.; Ivanov, G. S.; McKinney, K.; Tempst, P.; Prives, C.; Gamblin, S. J. Nature 2004, 432, 353.  doi: 10.1038/nature03117

    9. [9]

      He, Q.; Li, J.; Qi, Y.; Wang, Z.; Huang, Y.; Liu, L. Sci. China Chem. 2017, 60, 621.  doi: 10.1007/s11426-016-0386-4

    10. [10]

      Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J. D.; Zhao, Y. Mol. Cell. Proteomics 2012, 11, 100.  doi: 10.1074/mcp.M111.015875

    11. [11]

      Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.  doi: 10.1016/j.celrep.2013.07.024

    12. [12]

      Guan, C. J.; Wang, T.; Wang, J.; Yi, Y.-M. Chin. J. Org. Chem. 2016, 36, 2763(in Chinese).
       

    13. [13]

      Wang, Z.-P.; Wang, Y.-H.; Chu, G.-C.; Shi, J.; Li, Y.-M. Curr. Org. Synth. 2015, 12, 150.  doi: 10.2174/1570179411666141125215343

    14. [14]

      Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. Chem. Soc. Rev. 2015, 44, 5246.  doi: 10.1039/C4CS00373J

    15. [15]

      Luo, J.; Li, M.; Tang, Y.; Laszkowska, M.; Roeder, R. G.; Gu, W. Proc. Natl. Acad. Sci. U. S. A. 2004, 101,
       

    16. [16]

      Martino, F.; Kueng, S.; Robinson, P.; Tsai-Pflugfelder, M.; van Leeuwen, F.; Ziegler, M.; Cubizolles, F.; Cockell, M. M.; Rhodes, D.; Gasser, S. M. Mol. Cell 2009, 33, 323.  doi: 10.1016/j.molcel.2009.01.009

    17. [17]

      Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.  doi: 10.1002/anie.201310010

    18. [18]

      Tang, Y.; Zhao, W.; Chen, Y.; Zhao, Y.; Gu, W. Cell 2008, 133, 612.  doi: 10.1016/j.cell.2008.03.025

    19. [19]

      Li, F.; Zhang, H.; Sun, Y.; Pan, Y.; Zhou, J.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 9700.  doi: 10.1002/anie.201303477

    20. [20]

      Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.  doi: 10.1039/C4CS00393D

    21. [21]

      Chalker, J. M.; Bernardes, G. a. J.; Davis, B. G. Acc. Chem. Res. 2011, 44, 730.  doi: 10.1021/ar200056q

    22. [22]

      Chen, J.; Fu, H.; Chen, Y.; Zhao, Y. F. Chin. J. Org. Chem. 2002, 22, 81(in Chinese).  doi: 10.3321/j.issn:0253-2786.2002.02.001
       

    23. [23]

      Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.  doi: 10.1038/nchembio.315

    24. [24]

      Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.  doi: 10.1002/anie.201100996

    25. [25]

      Zheng, J.-S.; Tang, S.; Qi, Y.-K.; Wang, Z.-P.; Liu, L. Nat. Protoc. 2013, 8, 2483.  doi: 10.1038/nprot.2013.152

    26. [26]

      Zheng, J.-S.; Yu, M.; Qi, Y.-K.; Tang, S.; Shen, F.; Wang, Z.-P.; Xiao, L.; Zhang, L.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.  doi: 10.1021/ja500222u

    27. [27]

      Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2015, 127, 5805.  doi: 10.1002/ange.201500051

    28. [28]

      Fang, G. M.; Wang, J. X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.  doi: 10.1002/anie.201203843

    29. [29]

      Tang, S.; Liang, L. J.; Si, Y. Y.; Gao, S.; Wang, J. X.; Liang, J.; Mei, Z.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2017, 56, 13333.  doi: 10.1002/anie.201708067

    30. [30]

      Shimko, J. C.; North, J. A.; Bruns, A. N.; Poirier, M. G.; Ottesen, J. J. J. Mol. Boil. 2011, 408, 187.  doi: 10.1016/j.jmb.2011.01.003

    31. [31]

      Li, J.; Li, Y.; He, Q.; Li, Y.; Li, H.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.  doi: 10.1039/C4OB00715H

    32. [32]

      Howard, C. J.; Ruixuan, R. Y.; Gardner, M. L.; Shimko, J. C.; Ottesen, J. J. Top. Curr. Chem. 2015, 363, 193.  doi: 10.1007/978-3-319-19189-8

    33. [33]

      Zhang, W.; Wang, Y. Q.; Wang, J. Y. Prog. Biochem. Biophys. 2012, 39, 378(in Chinese).
       

    34. [34]

      Wang, L.; Xie, J.; Schultz, P. G. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225.  doi: 10.1146/annurev.biophys.35.101105.121507

    35. [35]

      Dumas, A.; Lercher, L.; Spicer, C. D.; Davis, B. G. Chem. Sci. 2015, 6, 50.  doi: 10.1039/C4SC01534G

    36. [36]

      Neumann, H.; Hancock, S. M.; Buning, R.; Routh, A.; Chapman, L.; Somers, J.; Owen-Hughes, T.; van Noort, J.; Rhodes, D.; Chin, J. W. Mol. Cell 2009, 36, 153.  doi: 10.1016/j.molcel.2009.07.027

    37. [37]

      Lee, Y.-J.; Wu, B.; Raymond, J. E.; Zeng, Y.; Fang, X.; Wooley, K. L.; Liu, W. R. ACS Chem. Biol. 2013, 8, 1664.  doi: 10.1021/cb400267m

    38. [38]

      Kim, C. H.; Kang, M.; Kim, H. J.; Chatterjee, A.; Schultz, P. G. Angew. Chem., Int. Ed. 2012, 51, 7246.  doi: 10.1002/anie.201203349

    39. [39]

      Thinon, E.; Serwa, R. A.; Broncel, M.; Brannigan, J. A.; Brassat, U.; Wright, M. H.; Heal, W. P.; Wilkinson, A. J.; Mann, D. J.; Tate, E. W. Nat. Commun. 2014, 5, 1.

    40. [40]

      Simon, M. D.; Chu, F.; Racki, L. R.; Cecile, C.; Burlingame, A. L.; Panning, B.; Narlikar, G. J.; Shokat, K. M. Cell 2007, 128, 1003.  doi: 10.1016/j.cell.2006.12.041

    41. [41]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    42. [42]

      Nguyen, D. P.; Garcia Alai, M. M.; Kapadnis, P. B.; Neumann, H.; Chin, J. W. J. Am. Chem. Soc. 2009, 131, 14194.  doi: 10.1021/ja906603s

    43. [43]

      Ai, H. W.; Lee, J. W.; Schultz, P. G. Chem. Commun. 2010, 46, 5506.  doi: 10.1039/c0cc00108b

    44. [44]

      Wang, Y.-S.; Wu, B.; Wang, Z.; Huang, Y.; Wan, W.; Russell, W. K.; Pai, P.-J.; Moe, Y. N.; Russell, D. H.; Liu, W. R. Mol. BioSyst. 2010, 6, 1557.  doi: 10.1039/c002155e

    45. [45]

      Gautier, A.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 2124.  doi: 10.1021/ja1109979

    46. [46]

      Hemphill, J.; Chou, C.; Chin, J. W.; Deiters, A. J. Am. Chem. Soc. 2013, 135, 13433.  doi: 10.1021/ja4051026

    47. [47]

      Nguyen, D. P.; Alai, M. M. G.; Virdee, S.; Chin, J. W. Chem. Biol. 2010, 17, 1072.  doi: 10.1016/j.chembiol.2010.07.013

    48. [48]

      Virdee, S.; Ye, Y.; Nguyen, D. P.; Komander, D.; Chin, J. W. Nat. Chem. Biol. 2010, 6, 750.  doi: 10.1038/nchembio.426

    49. [49]

      Wang, Z. A.; Li, J.; Li, Y. M. Chin. J. Org. Chem. 2013, 33, 1874(in Chinese).
       

    50. [50]

      Li, J. W.; Jie Chen, P. R. Acta Chim. Sinica 2012, 70, 1439(in Chinese).  doi: 10.3866/PKU.WHXB201203142

    51. [51]

      Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 651.  doi: 10.1021/ar200193f

    52. [52]

      Yang, M. Y.; Chen, P. R. Acta Chim. Sinica 2015, 73, 783(in Chinese).  doi: 10.3866/PKU.WHXB201502062

    53. [53]

      Seeliger, D.; Soeroes, S.; Klingberg, R.; Schwarzer, D.; Grubmüller, H.; Fischle, W. ACS Chem. Biol. 2011, 7, 150.

    54. [54]

      Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H.-Y.; Park, H.-S. Science 2016, 354, 623.  doi: 10.1126/science.aah4428

    55. [55]

      Wright, T. H.; Bower, B. J.; Chalker, J. M.; Bernardes, G. J.; Wiewiora, R.; Ng, W.-L.; Raj, R.; Faulkner, S.; Vallée, M. R. J.; Phanumartwiwath, A.; Davis, B. G. Science 2016, 354, 1465.  doi: 10.1126/science.aag1465

    56. [56]

      Wang, Z. A.; Liu, W. R. Chem. Eur. J. 2017, 23, 11732.  doi: 10.1002/chem.201701655

    57. [57]

      Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.  doi: 10.1038/nchembio0605-13

    58. [58]

      Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.  doi: 10.1039/C4CS00393D

    59. [59]

      Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.; Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 9026.  doi: 10.1021/ja027007w

    60. [60]

      Wang, Z. A.; Zeng, Y.; Kurra, Y.; Wang, X.; Tharp, J. M.; Vatansever, E. C.; Hsu, W. W.; Dai, S.; Fang, X.; Liu, W. R. Angew. Chem., Int. Ed. 2017, 56, 212.  doi: 10.1002/anie.201609452

    61. [61]

      Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.  doi: 10.1021/ja040175z

    62. [62]

      Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Cent. Sci. 2016, 2, 325.  doi: 10.1021/acscentsci.6b00024

    63. [63]

      Spicer, C. D.; Davis, B. G. Nat. Commun. 2014, 5, 1.

    64. [64]

      Kamadurai, H. B.; Souphron, J.; Scott, D. C.; Duda, D. M.; Miller, D. J.; Stringer, D.; Piper, R. C.; Schulman, B. A. Mol. Cell 2009, 36, 1095.  doi: 10.1016/j.molcel.2009.11.010

    65. [65]

      Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.  doi: 10.1021/jacs.7b00089

    66. [66]

      Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.  doi: 10.1038/nchembio.315

    67. [67]

      Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.  doi: 10.1021/jacs.7b00089

    68. [68]

      Li, X.; Fekner, T.; Ottesen, J. J.; Chan, M. K. Angew. Chem., Int. Ed. 2009, 121, 9348.  doi: 10.1002/ange.v121:48

    69. [69]

      Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W. J. Am. Chem. Soc. 2011, 133(30), 11418.  doi: 10.1021/ja203111c

    70. [70]

      Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.  doi: 10.1021/ja202799r

    71. [71]

      Amamoto, Y.; Aoi, Y.; Nagashima, N.; Suto, H.; Yoshidome, D.; Arimura, Y.; Osakabe, A.; Kato, D.; Kurumizaka, H.; Kawashima, S. A. J. Am. Chem. Soc. 2017, 139, 7568.  doi: 10.1021/jacs.7b02138

    72. [72]

      Chatterjee, C.; McGinty, R. K.; Pellois, J. P.; Muir, T. W. Angew. Chem., Int. Ed. 2007, 119(16), 2872.  doi: 10.1002/(ISSN)1521-3757

    73. [73]

      Weller, C. E.; Huang, W.; Chatterjee, C. ChemBioChem 2014, 15(9), 1263.  doi: 10.1002/cbic.v15.9

    74. [74]

      Weller, C. E.; Dhall, A.; Ding, F.; Linares, E.; Whedon, S. D.; Senger, N. A.; Tyson, E. L.; Bagert, J. D.; Li, X.; Augusto, O.; Chatterjee, C. Nat. Commun. 2016, 7, 12979.  doi: 10.1038/ncomms12979

    75. [75]

      Wu, J.; Ruiz-Rodríguez, J.; Comstock, J. M.; Dong, J. Z.; Bode, J. W. Chem. Sci. 2011, 2, 1976.  doi: 10.1039/c1sc00398d

    76. [76]

      Noda, H.; Erös, G. b.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611.  doi: 10.1021/ja5018442

    77. [77]

      Wan, W.; Huang, Y.; Wang, Z.; Russell, W. K.; Pai, P. J.; Russell, D. H.; Liu, W. R. Angew. Chem., Int. Ed. 2010, 49, 3211.  doi: 10.1002/anie.v49:18

    78. [78]

      Jing, H.; Lin, H. Chem. Rev. 2015, 115, 2350.  doi: 10.1021/cr500457h

    79. [79]

      Du, J.; Zhou, Y.; Su, X.; Yu, J. J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J. H.; Choi, B. H.; Lin, H. Science 2011, 334, 806.  doi: 10.1126/science.1207861

    80. [80]

      Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.  doi: 10.1016/j.celrep.2013.07.024

    81. [81]

      Ngo, J. T.; Schuman, E. M.; Tirrell, D. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4992.  doi: 10.1073/pnas.1216375110

    82. [82]

      Mahdavi, A.; Segall-Shapiro, T. H.; Kou, S.; Jindal, G. A.; Hoff, K. G.; Liu, S.; Chitsaz, M.; Ismagilov, R. F.; Silberg, J. J.; Tirrell, D. A. J. Am. Chem. Soc. 2013, 135(8), 2979.
       

    83. [83]

      Yang, R.; Bi, X.; Li, F.; Cao, Y.; Liu, C.-F. Chem. Commun. 2014, 50, 7971.  doi: 10.1039/C4CC03721A

    84. [84]

      Gong, Y.; Pan, L. Tetrahedron Lett. 2015, 56, 2123.  doi: 10.1016/j.tetlet.2015.03.065

    85. [85]

      Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Chem. Rev. 2015, 115, 2376.  doi: 10.1021/cr500491u

    86. [86]

      Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.  doi: 10.1038/nature10702

    87. [87]

      Fang, X.; Fu, Y.; Long, M. J. C.; Haegele, J. A.; Ge, E. J.; Parvez, S.; Aye, Y. J. Am. Chem. Soc. 2013, 135, 14496.  doi: 10.1021/ja405400k

    88. [88]

      Wang, L. New Biotechnol. 2017, 38, 16.  doi: 10.1016/j.nbt.2016.10.003

    89. [89]

      Wan, W.; Tharp, J. M.; Liu, W. R. Biochim. Biophys. Acta, Proteins Proteomics 2014, 1844, 1059.  doi: 10.1016/j.bbapap.2014.03.002

    90. [90]

      Müller, M. M.; Muir, T. W. Chem. Rev. 2014, 115, 2296.
       

    91. [91]

      Cigler, M.; Müller, T. G.; Horn-Ghetko, D.; von Wrisberg, M. K.; Fottner, M.; Goody, R. S.; Itzen, A.; Müller, M. P.; Lang, K. Angew. Chem., Int. Ed. 2017, 56, 15737.  doi: 10.1002/anie.v56.49

    92. [92]

      Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.  doi: 10.1038/nchembio.2406

    93. [93]

      Wang, Z. A.; Feng, T. S.; Cui, L. J.; Shi, Y. J.; Sha, Y. W. Sci. China:Life Sci. 2013, 43, 778(in Chinese).
       

    94. [94]

      Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429.  doi: 10.1021/jacs.6b04031

    95. [95]

      Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.  doi: 10.1038/nchem.2517

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    8. [8]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    9. [9]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    10. [10]

      Shangwen Luo Jianguo Fang Yanlong Yang Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096

    11. [11]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(31)
  • Abstract views(2939)
  • HTML views(691)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return