Citation: Chen Xun, Bai Lili, Zeng Wei. Recent Advances in C-H Bond Functionalization/Cyclization Involving Imines[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1859-1871. doi: 10.6023/cjoc201804033 shu

Recent Advances in C-H Bond Functionalization/Cyclization Involving Imines

  • Corresponding author: Zeng Wei, zengwei@scut.edu.cn
  • Received Date: 16 April 2018
    Revised Date: 4 May 2018
    Available Online: 17 August 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21372085), the Science and Technology Program of Guangzhou City (No. 156300075) and the Science and Technology Program of Qingyuan (No. 2014D006)the Science and Technology Program of Qingyuan 2014D006the National Natural Science Foundation of China 21372085the Science and Technology Program of Guangzhou City 156300075

Figures(24)

  • Transition metal-catalyzed direct C-H bond functionalization strategy has aroused wide concerns due to its high atom-economy and step-economy. Imine synthons exhibit diverse reactivities and are commonly employed to assemble nitrogen-containing complex molecules through direct C-H functionalization strategies, their reaction types and mechanisms are summarized in this paper.
  • 加载中
    1. [1]

      (a) Dolzhenko, A. V. ; Chui, W. K. Heterocycles 2008, 75, 1575.
      (b) Gundla, R. ; Kazemi, R. ; Sanam, R. ; Muttineni, R. ; Sarma, J. A. R. P. ; Dayam, R. ; Neamati, N. J. Med. Chem. 2008, 51, 3367.
      (c) Van Horn, K. S. ; Burda, W. N. ; Fleeman, R. ; Shaw, L. N. ; Manetsch, R. J. Med. Chem. 2014, 57, 3075.

    2. [2]

    3. [3]

    4. [4]

      (a) Lamas, M. C. ; Vaillard, S. E. ; Wibbeling, B. ; Studer, A. Org. Lett. 2010, 12, 2072.
      (b) Ricardo, G. P. ; Kiyoi, T. ; Whiting, A. Org. Biomol. Chem. 2011, 9, 3105.
      (c) Rishikesh, N. ; Potowski, M. ; Jia, Z. J. ; Antonchick, A. P. ; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296.

    5. [5]

      (a) Xiao, X. ; Zhang, W. ; Lu, X. ; Deng, Y. ; Jiang, H. ; Zeng, W. Adv. Synth. Catal. 2016, 358, 2497.
      (b) Dang, L. ; Liang, L. ; Qian, C. ; Fu, M. ; Ma, T. ; Xu, D. ; Jiang, H. ; Zeng, W. J. Org. Chem. 2014, 79, 769.
      (c) Fu, S. ; Jiang, H. ; Deng, Y. ; Zeng, W. Adv. Synth. Catal. 2011, 353, 2795.
      (d) Zhu, S. ; Lu, X. ; Luo, Y. ; Zhang, W. ; Jiang, H. ; Yan, M. ; Zeng, W. Org. Lett. 2013, 15, 1440.
      (e) Zhu, S. ; Dong, J. ; Fu, S. ; Jiang, H. ; Zeng, W. Org. Lett. 2011, 13, 4914.
      (f) Chen, J. ; Lu, X. ; Lou, W. ; Ye, Y. ; Jiang, H. ; Zeng, W. J. Org. Chem. 2012, 77, 8541.
      (g) Luo, Y. ; Lu, X. ; Ye, Y. ; Guo, Y. ; Jiang, H. ; Zeng, W. Org. Lett. 2012, 14, 5640.

    6. [6]

      Li, Q.; Wang, Y.; Hu, M.; Chen, P.; You, W.; Zhao, P. Chin. J. Org. Chem. 2017, 37, 967(in Chinese).
       

    7. [7]

      Wei, Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098.  doi: 10.1021/ja3030824

    8. [8]

      Chen, Z.; Lu, B., Ding, Z.; Gao, K.; Yoshikai, N. Org. Lett. 2013, 15, 1966.  doi: 10.1021/ol400638q

    9. [9]

      Meng, L.; Wu, K.; Liu, C.; Lei, A. Chem. Commun. 2013, 52, 5853.

    10. [10]

      Shi, Z.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 4892.  doi: 10.1002/anie.v52.18

    11. [11]

      Wu, K.; Meng, L.; Huai, M.; Huang, Z.; Liu, C.; Qi, X.; Lei, A. Chem. Commun. 2017, 53, 2294.  doi: 10.1039/C6CC09332A

    12. [12]

      Cappelli, A.; Giuliani, G.; Anzini, M.; Riitano, D.; Giorgi, G.; Vomero, S. Bioorg. Med. Chem. 2008, 16, 6850.  doi: 10.1016/j.bmc.2008.05.067

    13. [13]

      Li, M.; Xie, Y.; Ye, Y.; Zou, Y.; Jiang, H.; Zeng, W. Org. Lett. 2014, 16, 6232.  doi: 10.1021/ol503165b

    14. [14]

      Xiao, X.; Xie, Y.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 3998.  doi: 10.1021/acs.orglett.5b01868

    15. [15]

      Bagdi, A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2015, 355, 1741.

    16. [16]

      Zhang, Y.; Chen, Z.; Wu, W.; Zhang, Y.; Su, W. J. Org. Chem. 2013, 78, 12494.  doi: 10.1021/jo402134x

    17. [17]

      Xie, Y.; Chen, T.; Fu, S.; Li, X.; Deng, Y.; Jiang, H.; Zeng, W. Chem. Commun. 2014, 50, 10699.  doi: 10.1039/C4CC04676E

    18. [18]

      Xie, Y.; Chen, T.; Fu, S.; Jiang, H.; Zeng, W. Chem. Commun. 2015, 51, 9377.  doi: 10.1039/C5CC02631H

    19. [19]

      Wang, L.; Li, Z.; Wang, K.; Xu, X.; Hu, S.; Wang, F. Chin. J. Org. Chem. 2016, 36, 889(in Chinese).
       

    20. [20]

      Chen, X.; Xie, Y.; Xiao, X.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Chem. Commun. 2015, 51, 15328.  doi: 10.1039/C5CC06428G

    21. [21]

      Tan, W. W.; Yoshikai, N. Chem. Sci. 2015, 6, 6448.  doi: 10.1039/C5SC02322J

    22. [22]

      Barluenga, J.; Jimenez-Aquino, A.; Aznar, F.; Valdes, C. Chem. Eur. J. 2010, 16, 11707.  doi: 10.1002/chem.v16:38

    23. [23]

      Pham, N. N.; Dang, T. T.; Ngo, N. T. Villinger, A.; Ehlers, P.; Langer, P. Org. Biomol. Chem. 2015, 13, 6047.  doi: 10.1039/C5OB00720H

    24. [24]

      Chen, J.; Qu, H.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2015, 35, 937(in Chinese).
       

    25. [25]

      Lu, B.; Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 11598.  doi: 10.1021/ja5059795

    26. [26]

      Wu, J.; Yoshikai, N. Angew. Chem. Int. Ed. 2015, 54, 11107.  doi: 10.1002/anie.201504687

    27. [27]

      Deng, G. B.; Zhang, J. L.; Liu, Y. Y.; Liu, B.; Yang, X. H.; Li, J. H. Chem. Commun. 2015, 51, 1886.  doi: 10.1039/C4CC08498E

    28. [28]

      Chen, F.; Huang, X.; Li, X.; Shen, T.; Zou, M.; Jiao, N. Angew. Chem. Int. Ed. 2014, 53, 10495.  doi: 10.1002/anie.201406479

    29. [29]

      Chen, T.; Chen, X.; Wei, J.; Lin, D.; Xie, Y.; Zeng, W. Org. Lett. 2016, 18, 2078.  doi: 10.1021/acs.orglett.6b00709

    30. [30]

      Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050.  doi: 10.1021/ja904380q

    31. [31]

      Wei, X.; Zhao, M.; Du, Z.; Li, X. Org. Lett. 2011, 13, 4636.  doi: 10.1021/ol2018505

    32. [32]

      Zhang, S.; Liu, X.; Chen, S.; Tan, D.; Jiang, C.; Wu, J.; Li, Q.; Wang, H. Adv. Synth. Catal. 2016, 358, 1705.  doi: 10.1002/adsc.v358.10

    33. [33]

      He, R.; Huang, Z.; Zheng, Q.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 4950.  doi: 10.1002/anie.201402575

    34. [34]

      Badra, K.; Kumar, G. S. Med. Res. Rev. 2011, 31, 821.  doi: 10.1002/med.v31.6

    35. [35]

      Jayakumar, J.; Parthasarathy, K.; Cheng, C. H. Angew. Chem., Int. Ed. 2012, 124, 201.  doi: 10.1002/ange.201105755

    36. [36]

      Lao, Y.; Zhang, S.; Liu, X.; Jiang, C.; Wu, J.; Li, Q.; Huang, Z.; Wang, H. Adv. Synth. Catal. 2016, 358, 2186.  doi: 10.1002/adsc.v358.13

    37. [37]

      Zhang, W.; Wang, C.; Lin, H.; Dong, L.; Xu, Y. Chem.-Eur. J. 2016, 22, 907.  doi: 10.1002/chem.201504245

    38. [38]

      Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2012, 122, 8357.

    39. [39]

      Liang, Yu.; Müller, V.; Liu, W.; Münch, A.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 9415.  doi: 10.1002/anie.v56.32

    40. [40]

      Manikandan, R.; Tamizmani, M.; Jeganmohan, M. Org. Lett. 2017, 19, 6678.  doi: 10.1021/acs.orglett.7b03405

    41. [41]

      Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430.  doi: 10.1021/acscatal.7b00756

    42. [42]

      Li, X.; Li, X.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 9246.  doi: 10.1021/jacs.5b05843

    43. [43]

      Gao, B.; Liu, S.; Lan, Y.; Huang, H. Organometallics 2016, 35, 1480.  doi: 10.1021/acs.organomet.6b00072

    44. [44]

      Wang, J.; Zha, S.; Chen, K.; Zhang, F.; Zhu, J. Org. Biomol. Chem. 2016, 14, 4848.  doi: 10.1039/C6OB00901H

    45. [45]

      Kim, J. H.; Greßies, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 5577.  doi: 10.1002/anie.201601003

    46. [46]

      Li, X.; Sun, M.; Jin, Q.; Liu, K.; Liu, P. N. J. Org. Chem. 2016, 81, 3901.  doi: 10.1021/acs.joc.6b00264

    47. [47]

      Wang, H.; Li, L.; Yu, S.; Li, Y.; Li, X. Org. Lett. 2016, 18, 2914.  doi: 10.1021/acs.orglett.6b01284

    48. [48]

      Chen, X.; Liu, X.; Su, S. J.; Li, J.; Zeng, W. Chem. Commun. 2016, 52, 5856.  doi: 10.1039/C6CC00254D

    49. [49]

      Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234.  doi: 10.1016/j.ccr.2005.10.002

    50. [50]

      Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.  doi: 10.1021/ja4033555

    51. [51]

      Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.  doi: 10.1021/ol502010g

    52. [52]

      Lian, Y.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548.  doi: 10.1021/ja406131a

    53. [53]

      Wang, X.; Jiao, N. Org. Lett. 2016, 18, 2150.  doi: 10.1021/acs.orglett.6b00774

    54. [54]

      Park, Y.; Park, K. T.; Kim, J. G.; Chang, S. J. Am. Chem. Soc. 2015, 137, 4534.  doi: 10.1021/jacs.5b01324

    55. [55]

      Wang, J.; Zha, S.; Chen, K.; Zhang, F.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 2062.  doi: 10.1021/acs.orglett.6b00691

    56. [56]

      Wang, F.; Wang, H.; Wang, Q.; Yu, S.; Li, X. Org. Lett. 2016, 18, 1306.  doi: 10.1021/acs.orglett.6b00227

    57. [57]

      Wang, X.; Lerchen, A.; Glorius, F. Org. Lett. 2016, 18, 2029.

    58. [58]

      Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 10386.  doi: 10.1002/anie.201603260

    59. [59]

      Yu, S.; Tang, G.; Li, Y.; Zhou, X.; Lan, Y.; Li, X. Angew. Chem., Int. Ed. 2016, 55, 8696.  doi: 10.1002/anie.201602224

    60. [60]

      Li, L.; Wang, H.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.  doi: 10.1021/acs.orglett.6b01716

    61. [61]

      Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.  doi: 10.1021/acs.orglett.6b00727

    62. [62]

      (a) Zhu, R. -Y. ; Liu, L. -Y. ; Yu, J. -Q. J. Am. Chem. Soc. 2017, 139, 12394.
      (b) Xu, J. ; Liu, Y. ; Wang, Y. ; Li, Y. ; Xu, X. ; Jin, Z. Org. Lett. 2017, 19, 1562.
      (c) Yao, Q. -J. ; Zhang, S. ; Zhan, B. -B. ; Shi, B. -F. Angew. Chem., Int. Ed. 2017, 56, 6617.
      (d) Wu, Y. ; Chen, Y. -Q. ; Liu, T. ; Eastgate, M. D. ; Yu, J. -Q. J. Am. Chem. Soc. 2016, 138, 14554.
      (e) Liu, Y. ; Ge, H. Nat. Chem. 2016, 9, 26.
      (f) Xu, Y. ; Young, M. C. ; Dong, G. J. Am. Chem. Soc. 2017, 139, 5716.
      (g) Yada, A. ; Liao, W. ; Sato, Y. ; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 1073.

    63. [63]

      Chen, X. Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140.  doi: 10.1021/acs.orglett.7b00161

    64. [64]

      Hu, W.; Zheng, Q.; Sun, S.; Cheng, J. Chem. Commun. 2017, 53, 6263.  doi: 10.1039/C7CC03006A

    65. [65]

      Shen, J.; Liu, X.; Wang, L.; Chen, Q.; He, M. Synth. Commun. 2018, 9, 1.

    66. [66]

      Tan, P. W.; Juwaini, N. A. B.; Seayad, J. Org. Lett. 2013, 15, 5166.  doi: 10.1021/ol402145m

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(56)
  • Abstract views(4902)
  • HTML views(1460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return