Citation: Kong Shengnan, Qian Xuefeng, Shu Mouhai, Xiao Wende. Asymmetric Addition Reaction Catalyzed by 1- (2-Hydroxynaphtha-len-1-yl)naphthalen-2-ol Functionalized Porous Organic Polymer[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2754-2760. doi: 10.6023/cjoc201804011 shu

Asymmetric Addition Reaction Catalyzed by 1- (2-Hydroxynaphtha-len-1-yl)naphthalen-2-ol Functionalized Porous Organic Polymer

  • Corresponding author: Shu Mouhai, mhshu@sjtu.edu.cn
  • Received Date: 8 April 2018
    Revised Date: 25 May 2018
    Available Online: 7 October 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21271129)the National Natural Science Foundation of China 21271129

Figures(6)

  • A functionalized porous organic polymer POP-BINOL has been prepared and characterized by various techniques including carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP/MAS NMR), fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and thermogravimetric analysis (TG). After being treated with Ti (OiPr)4, the composite material could be used as highly effective and reusable heterogeneous catalyst for asymmetric diethylzinc addition to aldehydes with medium and upper ee value.
  • 加载中
    1. [1]

    2. [2]

      (a) Zhao, W. ; Xia, L. ; Liu, X. CrystEngComm 2018, 20, 1613.
      (b) Liu, G. ; Sheng, J. ; Zhao, Y. Sci. China, Chem. 2017, 60, 1015.

    3. [3]

      (a) Jiang, J. X. ; Su, F. ; Trewin, A. ; Wood, C. D. ; Campbell, N. L. Niu, H. J. ; Dickinson, C. ; Ganin, A. Y. ; Rosseinsky, M. J. ; Khimyak, Y. Z. ; Cooper, A. I. Angew. Chem. , Int. Ed. 2007, 119, 8574.
      (b) Xu, Y. ; Zhang, C. ; Mu, P. ; Mao, N. ; Wang, X. ; He, Q. ; Wang, F. ; Jiang, J. X. Sci. China, Chem. 2017, 60, 1075.

    4. [4]

    5. [5]

      Lee, J. S. M.; Briggs, M. E.; Hu, C. C.; Cooper, A. Nano Energy 2018, 46, 277.  doi: 10.1016/j.nanoen.2018.01.042

    6. [6]

      (a) Sato, H. ; Nakajo, S. ; Oishi, Y. ; Shibasaki, Y. React. Funct. Polym. 2018, 125, 70.
      (b) McKeown, N. B. Sci. China, Chem. 2017, 60, 1023.

    7. [7]

      Schmidt, J.; Werner, M.; Thomas, A. Macromolecules 2009, 42, 4426.  doi: 10.1021/ma9005473

    8. [8]

      Zhang, P.; Weng, Z.; Guo, J.; Wang, C. C. Chem. Mater. 2011, 23, 5243.  doi: 10.1021/cm202283z

    9. [9]

      Sun, L. B.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Polym. Chem. 2013, 4, 1932.  doi: 10.1039/c2py21034g

    10. [10]

    11. [11]

      Modak, A.; Mondal, J.; Bhaumik, A. ChemCatChem 2013, 5, 1749.  doi: 10.1002/cctc.v5.7

    12. [12]

      Gomes, R.; Bhanja, P.; Bhaumik, A. J. Mol. Catal. A:Chem. 2016, 411, 110.  doi: 10.1016/j.molcata.2015.10.016

    13. [13]

      C té, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    14. [14]

      Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672.  doi: 10.1038/nchem.695

    15. [15]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B.; Cooper, A. Angew. Chem., Int. Ed. 2017, 56, 14149.  doi: 10.1002/anie.201708548

    17. [17]

    18. [18]

      Wang, T.; Zhao, Y. C.; Luo, M.; Zhang, L. M.; Cui, Y.; Zhang, C. S.; Han, B. H. Polymer 2015, 60, 26.  doi: 10.1016/j.polymer.2014.12.072

    19. [19]

      Sang, N.; Zhan, C.; Cao, D. J. Mater. Chem. A 2015, 3, 92.  doi: 10.1039/C4TA04903A

    20. [20]

      Li, R.; Wang, Z. J. Wang, L.; Ma, B. C.; Ghasimi, S.; Lu, H.; Landfester, K.; Zhang, K. A. I. ACS Catal. 2016, 6, 1113.  doi: 10.1021/acscatal.5b02490

    21. [21]

      Li, X. C.; Zhang, Y.; Wang, C. Y.; Wan, Y.; Lai, W. Y.; Pang, H.; Huang, W. Chem. Sci. 2017, 8, 2959.  doi: 10.1039/C6SC05532J

    22. [22]

      (a) Ma, L. ; Wanderley, M. M. ; Lin, W. ACS Catal. 2011, 1, 691.
      (b) Noyori, R. ; Tomino, I. ; Tanimoto, Y. J. Am. Chem. Soc. 1979, 101, 3129.
      (c) Maruoka, K. ; Itoh, T. ; Shirasaka, T. ; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 310.
      (d) Mikami, K. ; Matsukawa, S. ; Volk, T. ; Terada, M. Angew. Chem. , Int. Ed. 1997, 36, 2768.
      (e) Ma, M. F. P. ; Li, K. ; Zhou, Z. ; Tang, C. ; Chan, A. S. C. Tetrahedron: Asymmetry 1999, 10, 3259.
      (f) Wang, X. ; Wang, X. ; Guo, H. ; Wang, Z. ; Ding, K. Chem. -Eur. J. 2005, 11, 4078.
      (g) Wang, X. ; Shi, L. ; Li, M. ; Ding, K. L. Angew. Chem. , Int. Ed. 2005, 44, 6362.

    23. [23]

      Liu, D.; Ouyang, K.; Yang, N. Tetrahedron 2016, 47, 1018.

    24. [24]

      Zhao, Y.; Li, J.; Li, C.; Yin, K.; Ye, D.; Jia, X. Green Chem. 2010, 12, 1370.  doi: 10.1039/c0gc00158a

    25. [25]

      Valente, C.; Choi, E.; Belowich, M. E.; Doonan, C. J.; Li, Q.; Gasa, T. B.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. Chem. Commun. 2010, 46, 4911.  doi: 10.1039/c0cc00997k

    26. [26]

      (a) Zhang, Y. ; Zhang, Y. ; Sun, Y. L. ; Du, X. ; Shi, J. Y. ; Wang, W. D. ; Wang, W. Chem. -Eur. J. 2012, 18, 6328.
      (b) Kiskan, B. ; Antonietti, M. ; Weber, J. Macromolecules 2012, 45, 1356.

    27. [27]

      Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2017, 138, 12332.

    28. [28]

      Aga, M. A.; Kumar, B.; Rouf, A.; Shah, B. A.; Taneja, S. C. Tetrahedron Lett. 2014, 55, 2639.  doi: 10.1016/j.tetlet.2014.03.002

  • 加载中
    1. [1]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

Metrics
  • PDF Downloads(8)
  • Abstract views(1297)
  • HTML views(258)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return