Citation: Chen Shuqi, Yang Wen, Yao Yongqi, Yang Xin, Deng Yingying, Yang Dingqiao. Progress in Ruthenium-Catalyzed Asymmetric Hydrogenation of β-Keto Esters[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2534-2552. doi: 10.6023/cjoc201802022 shu

Progress in Ruthenium-Catalyzed Asymmetric Hydrogenation of β-Keto Esters

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 24 February 2018
    Revised Date: 15 May 2018
    Available Online: 7 October 2018

    Fund Project: the Natural Science Foundation of Guangdong Province S2013020013091the City of Guangzhou Science and Technology Plan Projects 156300018the National Natural Science Foundation of China 21372090the National Natural Science Foundation of China 21172081Project supported by the National Natural Science Foundation of China (Nos. 21172081, 21372090), the Natural Science Foundation of Guangdong Province (No. S2013020013091) and the City of Guangzhou Science and Technology Plan Projects (No. 156300018)

Figures(17)

  • Ruthenium-catalyzed asymmetric hydrogenation of β-keto esters is one of the most effective methods for the synthesis of chiral β-hydroxy esters. The recent research progress in ruthenium-catalyzed asymmetric hydrogenation of β-keto esters is reviewed. Great attention was paid to the influences of chiral ligands, substrate structure, solvents and additives on the homogeneous asymmetric hydrogenation, as well as the influences of support materials and additives on the heterogeneous asymmetric hydrogenation.
  • 加载中
    1. [1]

      Parshall, G. W.; Nugent, W. A. CHEMTECH 1988, 18, 184.

    2. [2]

      Parshall, G. W.; Nugent, W. A. CHEMTECH 1988, 18, 376.

    3. [3]

      Yin, Y.-Q.; Jiang, Y.-Z. Progress in Asymmetric Catalytic Reactions, Science Press, Beijing, 2000, p. 13(in Chinese).

    4. [4]

      Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 72, 1445.
       

    5. [5]

      Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.  doi: 10.1021/ja00547a020

    6. [6]

      Li, S.-S. Chin. J. Nat. 2001, 23, 349(in Chinese).
       

    7. [7]

      (a) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2012, 134, 2442.
      (b) Li, J.; Shen, J.-F.; Xia, C.; Wang, Y.-Z.; Liu, D.-L.; Zhang, W.-B. Org. Lett. 2016, 18, 2122.

    8. [8]

      (a) Jiang, J.; Lu, W.-X.; Lv, H.; Zhang, X.-M. Org. Lett. 2015, 17, 1154.
      (b) Li, P.; Zhou, M.; Zhao, Q.-Y.; Wu, W.-L.; Hu, X.-Q.; Dong X.-Q.; Zhang, X.-M. Org. Lett. 2016, 18, 40.

    9. [9]

    10. [10]

      (a) Mondelli, C.; Vargas, A.; Santarossa, G.; Baiker, A. J. Phys. Chem. C 2009, 113, 15246.
      (b) Meemken, F.; Baiker, A.; Dupré, J.; Hungerbühler, K. ACS Catal. 2014, 4, 344.
      (c) Guan, S.-L.; Donovan-Sheppard, O.; Reece, C.; Willock, D. J.; Wain, A. J.; Attard, G. A. ACS Catal. 2016, 6, 1822.

    11. [11]

      (a) Chen, M.-W.; Duan, Y.; Chen, Q.-A.; Wang, D.-S.; Yu, C.-B.; Zhou, Y.-G. Org. Lett. 2010, 12, 5075.
      (b) Chen, Z.-P.; Hu, S.-B.; Zhou, J.; Zhou, Y.-G. ACS Catal. 2015, 5, 6086.

    12. [12]

      Lv, M.; Liu, H.-W. Guangdong Chem. Ind. 2014, 41, 150(in Chinese).
       

    13. [13]

      Paul, D.; Beiring, B.; Plois, M.; Ortega, N.; Kock, S.; Schlüns, D.; Neugebauer, J.; Wolf, R.; Glorius, F. Organometallics 2016, 35, 3641.  doi: 10.1021/acs.organomet.6b00702

    14. [14]

      Eichenseer, C. M.; Kastl, B.; Pericàs, M. A.; Hanson, P. R.; Reiser, O. ACS Sustainable Chem. Eng. 2016, 4, 2698.  doi: 10.1021/acssuschemeng.6b00197

    15. [15]

      Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706.  doi: 10.1002/anie.201200309

    16. [16]

    17. [17]

      Guo, H.-C.; Ding, K.-L.; Dai, L.-X. Chin. Sci. Bull. 2004, 49, 1575(in Chinese).  doi: 10.3321/j.issn:0023-074X.2004.16.001

    18. [18]

      Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961.
       

    19. [19]

      Öchsner, E.; Etzold, B.; Junge, K.; Beller, M.; Wasserscheid, P. Adv. Synth. Catal. 2009, 351, 235.  doi: 10.1002/adsc.200800531

    20. [20]

      Dong, J.-X.; Yang, D.-Q.; Liu, E.-C.; Jiang, K.-L.; Han, Y.-F. Chem. Ind. Times 2005, 19, 40(in Chinese).
       

    21. [21]

      Korostylev, A.; Andrushko, V.; Andrushko, N.; Tararov, V. I.; König, G.; Börner, A. Eur. J. Org. Chem. 2008, 840.
       

    22. [22]

      Hamada, Y.; Makino, K. J. Synth. Org. Chem., Jpn. 2008, 66, 1057.  doi: 10.5059/yukigoseikyokaishi.66.1057

    23. [23]

      Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Tetrahedron:Asymmetry 2008, 19, 2816.  doi: 10.1016/j.tetasy.2008.12.024

    24. [24]

      Makino, K.; Goto, T.; Ohtaka, J.; Hamada, Y. Heterocycles 2009, 77, 629.  doi: 10.3987/COM-08-S(F)46

    25. [25]

      Roche, C.; Desroy, N.; Haddad, M.; Phansavath, P.; Genêt, J. P. Org. Lett. 2008, 10, 3911.  doi: 10.1021/ol801493w

    26. [26]

      Roche, C.; Roux, R. L.; Haddad, M.; Phansavath, P.; Genêt, J. P. Synlett 2009, 573.

    27. [27]

      Prévost, S.; Gauthier, S.; De Andrade, M. C.; Mordant, C.; Touati, A. R.; Lesot, P.; Savignac, P.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V.; Genêt, J. P. Tetrahedron:Asymmetry 2010, 21, 1436.  doi: 10.1016/j.tetasy.2010.05.017

    28. [28]

      Prévost, S.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. Adv. Synth. Catal. 2011, 353, 3213.  doi: 10.1002/adsc.v353.17

    29. [29]

      Touati, R.; Hassine, B. B. J. Soc. Chim. Tunis. 2008, 10, 127.

    30. [30]

      Kesselgruber, M.; Lotz, M.; Martin, P.; Melone, G.; Müller, M.; Pugin, B.; Naud, F.; Spindler, F.; Thommen, M.; Zbinden, P.; Blaser, H. U. Chem. Asian J. 2008, 3, 1384.  doi: 10.1002/asia.v3:8/9

    31. [31]

      Chen, L.; Ma, M.-L.; Peng, Z.-H.; Chen, H. Chin. J. Org. Chem. 2008, 28, 1724(in Chinese).
       

    32. [32]

      Peng, Z.-H.; Ma, M.-L.; Fu, H.-Y.; Chen, H.; Li, X.-J. Chin. J. Catal. 2010, 31, 191(in Chinese).
       

    33. [33]

      Sun, X.-F.; Li, W.; Hou, G.-H.; Zhou, L.; Zhang, X.-M. Adv. Synth. Catal. 2009, 351, 2553.  doi: 10.1002/adsc.200900589

    34. [34]

      Wang, C.-J.; Wang, C.-B.; Chen, D.; Yang, G.-F.; Wu, Z.-S.; Zhang, X.-M. Tetrahedron Lett. 2009, 50, 1038.  doi: 10.1016/j.tetlet.2008.12.057

    35. [35]

      Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223.  doi: 10.1021/jo000462v

    36. [36]

      Sun, X.-F.; Li, W.; Zhou, L.; Zhang, X.-M. Chem.-Eur. J. 2009, 15, 7302.  doi: 10.1002/chem.v15:30

    37. [37]

      Yuan, W.-C.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Tetrahedron 2009, 65, 4130.  doi: 10.1016/j.tet.2009.03.066

    38. [38]

      Oki, H.; Oura, I.; Nakamura, T.; Ogata, K.; Fukuzawa, S. I. Tetrahedron:Asymmetry 2009, 20, 2185.  doi: 10.1016/j.tetasy.2009.09.004

    39. [39]

      Floris, T.; Kluson, P.; Slater, M. React. Kinet., Mech. Catal. 2011, 102, 67.  doi: 10.1007/s11144-010-0256-1

    40. [40]

      Yao, Y.; Fan, W.-Z.; Li, W.-F.; Ma, X.; Zhu, L.-F.; Xie, X.-M.; Zhang, Z.-G. J. Org. Chem. 2011, 76, 2807.  doi: 10.1021/jo2002165

    41. [41]

      Fan, W.-Z.; Li, W.-F.; Ma, X.; Tao, X.-M.; Li, X.-M.; Yao, Y.; Xie, X.-M.; Zhang, Z.-G. J. Org. Chem. 2011, 76, 9444.  doi: 10.1021/jo201822k

    42. [42]

      Li, W.-F.; Ma, X.; Fan, W.-Z.; Tao, X.-M.; Li, X.-M.; Xie, X.-M.; Zhang, Z.-G. Org. Lett. 2011, 13, 3876.  doi: 10.1021/ol201406w

    43. [43]

      Fan, W.-Z.; Li, W.-F.; Ma, X.; Tao, X.-M.; Li, X.-M.; Yao, Y.; Xie, X.-M.; Zhang, Z.-G. Chem. Commun. 2012, 48, 4247.  doi: 10.1039/c2cc31002c

    44. [44]

      Ma, X.; Li, W.-F.; Li, X.-M.; Tao, X.-M.; Fan, W.-Z.; Xie, X.-M.; Ayad, T.; Ratovelomanana-Vidal, V.; Zhang, Z.-G. Chem. Commun. 2012, 48, 5352.  doi: 10.1039/c2cc30925d

    45. [45]

      Li, W.-F.; Tao, X.-M.; Ma, X.; Fan, W.-Z.; Li, X.-M.; Zhao, M.-M.; Xie, X.-M.; Zhang, Z.-G. Chem.-Eur. J. 2012, 18, 16531.  doi: 10.1002/chem.201202614

    46. [46]

      Li, X.-M.; Tao, X.-M.; Ma, X.; Li, W.-F.; Zhao, M.-M.; Xie, X.-M.; Ayad, T.; Ratovelomanana-Vidal, V.; Zhang, Z.-G. Tetrahedron 2013, 69, 7152.  doi: 10.1016/j.tet.2013.05.136

    47. [47]

      Satyanarayana, P.; Maheswaran, H.; Kantama, M. L.; Chawla, H. P. S. Catal. Sci. Technol. 2012, 2, 2508.  doi: 10.1039/c2cy20335a

    48. [48]

      Brewitz, L.; Llaveria, J.; Yada, A.; Fürstner, A. Chem.-Eur. J. 2013, 19, 4532.  doi: 10.1002/chem.201204551

    49. [49]

      Haydl, A. M.; Breit, B. Chem.-Eur. J. 2017, 23, 541.  doi: 10.1002/chem.201605011

    50. [50]

      Cartigny, D.; Püntener, K.; Ayad, T.; Scalone, M.; Ratovelomanana-Vidal, V. Org. Lett. 2010, 12, 3788.  doi: 10.1021/ol101451s

    51. [51]

      Monnereau, L.; Cartigny, D.; Scalone, M.; Ayad, T.; Ratovelomanana-Vida, V. Chem.-Eur. J. 2015, 21, 11799.  doi: 10.1002/chem.v21.33

    52. [52]

      Echeverria, P. G.; Cornil, J.; Férard, C.; Guérinot, A.; Cossy, J.; Phansavath, P.; Ratovelomanana-Vidal, V. RSC Adv. 2015, 5, 56815.  doi: 10.1039/C5RA10385A

    53. [53]

      Perez, M.; Echeverria, P. G.; Martinez-Arripe, E.; Zoubir, M. E.; Touati, R.; Zhang, Z.-G.; Genet, J. P.; Phansavath, P.; Ayad, T.; Ratovelomanana-Vidal, V. Eur. J. Org. Chem. 2015, 5949.
       

    54. [54]

      Liu, Z.-Q.; Shultz, C. S.; Sherwood, C. A.; Krska, S.; Dormer, P. G.; Desmond, R.; Lee, C.; Sherer, E. C.; Shpungin, J.; Cuff, J.; Xu, F. Tetrahedron Lett. 2011, 52, 1685.  doi: 10.1016/j.tetlet.2011.01.146

    55. [55]

      Fang, Z.-J.; Wills, M. J. Org. Chem. 2013, 78, 8594.  doi: 10.1021/jo401284c

    56. [56]

      Kišić, A.; Stephan, M.; Mohar, B. Org. Lett. 2013, 15, 1614.  doi: 10.1021/ol400393j

    57. [57]

      Rast, S.; Modec, B.; Stephan, M.; Mohar, B. Org. Biomol. Chem. 2016, 14, 2112.  doi: 10.1039/C5OB02352A

    58. [58]

      Sun, G.-D.; Zhou, Z.-H.; Luo, Z.-H.; Wang, H.-L.; Chen, L.; Xu, Y.-B.; Li, S.; Jian, W.-L.; Zeng, J.-B.; Hu, B.-Q.; Han, X.-D.; Lin, Y.-C.; Wang, Z.-Q. Org. Lett. 2017, 19, 4339.  doi: 10.1021/acs.orglett.7b01982

    59. [59]

      Weng, W.; Zhou, H.-Y.; Fu, H.-X.; Lv, S.-J. Chin. J. Org. Chem. 1998, 18, 509(in Chinese).
       

    60. [60]

      Seashore-Ludlow, B.; Villo, P.; Häcker, C.; Somfai, P. Org. Lett. 2010, 12, 5274.  doi: 10.1021/ol102323k

    61. [61]

      Wang, X.-L.; Xu, L.-J.; Yan, L.-J.; Wang, H.-F.; Han, S.; Wu, Y.; Chen, F.-E. Tetrahedron 2016, 72, 1787.  doi: 10.1016/j.tet.2016.02.045

    62. [62]

      Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M. Angew. Chem. 2013, 125, 9483.  doi: 10.1002/ange.201304408

    63. [63]

      Yamamura, T.; Nakane, S.; Nomura, Y.; Tanaka, S.; Kitamura, M. Tetrahedron 2016, 72, 3781.  doi: 10.1016/j.tet.2016.02.007

    64. [64]

      Lipkin, D.; Stewart, T. D. J. Am. Chem. Soc. 1939, 61, 3297.  doi: 10.1021/ja01267a017

    65. [65]

      Zuo, X.-B.; Liu, H.-F. J. Mol. Catal. 1997, 11, 309(in Chinese).
       

    66. [66]

      Lu, F.-S.; Chao, J.-P.; Yang, C.-Y. Prog. Chem. 2001, 13, 192(in Chinese).  doi: 10.3321/j.issn:1005-281X.2001.03.005

    67. [67]

      Song, C. E. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 2005, 101, 143.  doi: 10.1039/b408828j

    68. [68]

      McDonald, A. R.; Müller, C.; Vogt, D.; Klinka, G. P. M. V.; Koten, G. V. Green Chem. 2008, 10, 424.  doi: 10.1039/b714189k

    69. [69]

      Ahn, S. H.; Choi, M. S.; Im, J. S.; Sheikh, R.; Park, Y. H. J. Mol. Catal. A:Chem. 2013, 373, 55.  doi: 10.1016/j.molcata.2013.03.001

    70. [70]

      Kluson, P.; Krystynik, P.; Dytrych, P.; Bartek, L. React. Kinet., Mech. Cat. 2016, 119, 393.  doi: 10.1007/s11144-016-1078-6

    71. [71]

      Dongil, A. B. Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Catal. Commun. 2012, 26, 149.  doi: 10.1016/j.catcom.2012.05.015

    72. [72]

      Seki, T.; McEleney, K.; Crudden, C. M. Chem. Commun. 2012, 48, 6369.  doi: 10.1039/c2cc31247f

    73. [73]

      Peng, J.; Wang, X.-F.; Zhang, X.-M.; Bai, S.-Y.; Zhao, Y.-P.; Li, C.; Yang, Q.-H. Catal. Sci. Technol. 2015, 5, 666.  doi: 10.1039/C4CY00228H

    74. [74]

      Sun, Q.; Meng, X.-J.; Liu, X.; Zhang, X.-M.; Yang, Y.; Yang, Q.-H.; Xiao, F.-S. Chem. Commun. 2012, 48, 10505.  doi: 10.1039/c2cc35192g

    75. [75]

      Wang, X.; Lu, S.-M.; Li, J.; Liu, Y.; Li, C. Catal. Sci. Technol. 2015, 5, 2585.  doi: 10.1039/C5CY00038F

    76. [76]

      Wang, T.; Lyu, Y.; Xiong, K.; Wang, W.-L.; Zhang, H.; Zhan, Z.-P.; Jiang, Z.; Ding, Y.-J. Chin. J. Catal. 2017, 38, 890.  doi: 10.1016/S1872-2067(17)62826-2

    77. [77]

      Kong, S.-N.; Malik, A. U.; Qian, X.-F.; Shu, M.-H.; Xiao, W.-D. Chin. J. Org. Chem. 2018, 38, 656(in Chinese).
       

    78. [78]

      Falkowski, J. M.; Sawano, T.; Zhang, T.; Tsun, G.; Chen, Y.; Lockard, J. V.; Lin, W.-B. J. Am. Chem. Soc. 2014, 136, 5213.  doi: 10.1021/ja500090y

    79. [79]

      Wang, W.-W.; Wang, Q.-R. Chem. Commun. 2010, 46, 4616.  doi: 10.1039/c002168g

    80. [80]

      Wang, W.-W.; Li, Z.-M.; Su, L.; Wang, Q.-R.; Wu, Y.-L. J. Mol. Catal., A 2014, 387, 92.  doi: 10.1016/j.molcata.2014.02.030

    81. [81]

      Ma, B.-D.; Miao, T.-T.; Sun, Y.-H.; He, Y.-M.; Liu, J.; Feng, Y.; Chen, H.; Fan, Q.-H. Chem.-Eur. J. 2014, 20, 9969.  doi: 10.1002/chem.201402709

    82. [82]

      Wang, W.-W.; Li, Z.-M.; Mu, W.-B.; Su, L.; Wang, Q.-R. Catal. Commun. 2010, 11, 480.  doi: 10.1016/j.catcom.2009.12.002

    83. [83]

      Zeror, S.; Collin, J.; Fiaud, J. C.; Zouioueche, L. A. Tetrahedron:Asymmetry 2010, 21, 1211.  doi: 10.1016/j.tetasy.2010.05.014

    84. [84]

      Seashore-Ludlow, B.; Villo, P.; Somfai, P. Chem.-Eur. J. 2012, 18, 7219.  doi: 10.1002/chem.201103739

    85. [85]

      Seashore-Ludlow, B. Saint-Dizier, F.; Somfai, P. Org. Lett. 2012, 14, 6334.  doi: 10.1021/ol303115v

    86. [86]

      Floris, T.; Kluson, P.; Bartek, L.; Pelantova, H. Appl. Catal., A 2009, 366, 160.  doi: 10.1016/j.apcata.2009.07.002

    87. [87]

      Öchsner, E.; Schneiders, K.; Junge, K.; Beller, M.; Wasserscheid, P. Appl. Catal., A 2009, 364, 8.  doi: 10.1016/j.apcata.2009.05.020

    88. [88]

      Öchsner, E.; Schneider, M. J.; Meyer, C.; Haumann, M.; Wasserscheid, P. Appl. Catal., A 2011, 399, 35.  doi: 10.1016/j.apcata.2011.03.038

    89. [89]

      Jin, X.; Kong, F.-F.; Yang, Z.-Q.; Cui, F.-F. J. Mol. Catal. A-Chem. 2013, 374, 22.
       

    90. [90]

      Turova, O. V.; Kuchurov, I. V.; Starodubtseva, E. V.; Ferapontov, V. A.; Ikonnikov, N. S.; Zlotina, S. G.; Vinogradov, M. G. Mendeleev Commun. 2012, 22, 184.  doi: 10.1016/j.mencom.2012.06.003

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    17. [17]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(22)
  • Abstract views(1705)
  • HTML views(329)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return