Citation: Ma Jiaoli, Chen Licheng, Yuan Zhongwen, Cheng Huicheng. Recent Advance of Acyclic Diaryliodonium Salts in Arylation of Heteroatom[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1586-1595. doi: 10.6023/cjoc201802021 shu

Recent Advance of Acyclic Diaryliodonium Salts in Arylation of Heteroatom

  • Corresponding author: Cheng Huicheng, awchengcheng@163.com
  • Received Date: 22 February 2018
    Revised Date: 2 April 2018
    Available Online: 13 July 2018

    Fund Project: Project supported by the Maoming City Technology Bureau (No. 917313), the Guangdong University of Petrochemical Technology (Nos. 517152, 517136, 2017pyA006)

Figures(9)

  • As a kind of low toxicity, environmentally friendly, high reaction activity reagent, hypervalent iodine compounds have received the widespread attention. Acyclic diaryl iodonium salt as aryl cationic reagent, has an important application in organic synthesis. Under mild conditions, diaryl iodonium salt can react with nucleophilic reagent, which has been one of the effective means of the arylation of heteroatom. According to the classification of chemical bond formation, the application of the acyclic diaryl iodonium salt in the arylation of heteroatom (including oxygen, nitrogen, sulfur, phosphorus, etc.) is discussed and the development direction in the field is prospected.
  • 加载中
    1. [1]

      (a) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2013.
      (b) Wirth, T. Hypervalent Iodine Chemistry, Springer, Berlin, 2003.
      (c) Varvoglis, A. Hypervalent Iodine in Organic Syntheses, Academic Press, San Diego, 1996.
      (d) Zhdankin, V. V. ARKIVOC 2009, (i), 1.
      (e) Wirth, T. Angew. Chem. Int. Ed. 2005, 117, 3722.
      (f) Richardson, R. D. ; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402.
      (g) Zhang, X. ; Cong, Y. ; Lin, G. -Y. ; Guo, X. -L. ; Cao, Y. ; Lei, K. -H. ; Du, Y. -F. J. Org. Chem. 2016, 36, 2513 (in Chinese).
      (张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞, 有机化学, 2016, 36, 2513.)
      (h) Duan, Y. -N. ; Jiang, S. ; Han, Y. -C. ; Sun, B. ; Zhang, C. J. Org. Chem. 2016, 36, 973 (in Chinese).
      (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)

    2. [2]

      (a) Koser, G. F. ; Wettach, R. H. ; Smith, C. S. J. Org. Chem. 1980, 45, 1543.
      (b) Stang, P. J. ; Zhdankin, V. V. ; Tykwinski, R. Tetrahedron Lett. 1992, 33, 1419.
      (c) Merritt, E. A. ; Olofsson, B. Angew. Chem. Int. Ed. 2009, 48, 9052.
      (d) Bielawski, M. ; Olofsson, B. Chem. Commun. 2007, 25, 2521.
      (e) Bielawski, M. ; Zhu, M. ; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
      (f) Bielawski, M. ; Olofsson, B. Chem. Commun. 2007, 2521.
      (g) Zhu, M. ; Jalalian, N. ; Olofsson, B. Synlett 2008, 592.
      (h) Yusubov, M. S. ; Maskaev, A. V. ; Zhdankin, V. V. ARKIVOC 2011, (i), 370.
      (i) Xiao, Z. -C. ; Xia, C. -F. Chin. J. Org. Chem. 2013, 33, 2119 (in Chinese).
      (肖志超, 夏成峰, 有机化学, 2013, 33, 2119.)
      (j) Zhang, B. -X. ; Zhao, X. -Y. ; Wu, Q. ; Guo, Y. -L. Prog. Chem. 2013, 25, 1142 (in Chinese).
      (张变香, 赵晓芸, 吴群, 郭一力, 化学进展, 2013, 25, 1142.)
      (k) Olofsson, B. Top. Curr. Chem. 2015, 373, 135. (l) Aradi, K. ; Tóth, B. L. ; Tolnai, G. L. ; Novák, Z. Synlett 2016, 27, 1456.

    3. [3]

      Hartmann, C.; Meyer, V. Ber. Dtsch. Chem. Ges. 1894, 27, 426.  doi: 10.1002/(ISSN)1099-0682

    4. [4]

      (a) Koser, G. F. ; Wettach, R. H. ; Smith, C. S. J. Org. Chem. 1980, 45, 1543.
      (b) Carman C. S. ; Koser G. F. J. Org. Chem. 1983, 48, 2534.
      (c) Margida A. J. ; Koser G. F. J. Org. Chem. 1984, 49, 3643.
      (d) Kitamura T. ; Matsuyuki J. ; Taniguchi H. Synthesis 1994, 147.
      (e) Mascarelli, L. ; Benati. G. Gazz. Chim Ital. 1908, 38, 627.
      (f) Merritt, E. A. ; Malmgren, J. ; Klinke, F. J. ; Olofsson, B. Synlett 2009, 2277.
      (g) Bielawski, M. ; Aili, D. ; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
      (h) Lindstedt, E. ; Reitti, M. ; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
      (i) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315.
      (j) Chatterjee, N. ; Goswami, A. Eur. J. Org. Chem. 2017, 3023.

    5. [5]

      (a) Stang P. J. ; Zhdankin V. V. Chem. Rev. 1996, 96, 1123.
      (b) Olofsson B. ; Merritt. E. A. Angew. Chem., Int. Ed. 2009, 48, 9052.

    6. [6]

      (a) Der Puy, M. V. J. Fluorine Chem. 1982, 21, 385.
      (b) Pike, V. W. ; Aigbirhio, F. I. J. Chem. Soc., Chem. Commun. 1995, 2215.
      (c)Shah, A. ; W. Pike, V. ; A. Widdowson, D. J. Chem. Soc., Perkin Trans. 1 1998, (13), 2043.
      (d) Graskemper, J. W. ; Wang, B. ; Qin, L. ; Neumann, K. D. ; DiMagno, S. G. Org. Lett. 2011, 13, 3158.

    7. [7]

      (a) Ichiishi, N. ; Canty, A. J. ; Yates, B. F. ; Sanford, M. S. Org. Lett. 2013, 15, 5134.
      (b)Ichiishi, N. ; Canty, A. J. ; Yates, B. F. ; Sanford, M. S. Organometallics 2014, 33, 5525.
      (c) Ichiishi, N. ; Brooks, A. F. ; Topczewski, J. J. ; Rodnick, M. E. ; Sanford, M. S. ; Scott, P. J. H. Org. Lett. 2014, 16, 3224.

    8. [8]

      Moon, B. S.; Kil, H. S.; Park, J. H.; Kim, J. S.; Park, J.; Chi, D. Y.; Lee, B. C.; Kim, S. E. Org. Biomol. Chem. 2011, 9, 8346.  doi: 10.1039/c1ob06277h

    9. [9]

      Chun, J.-H.; Pike, V. W. Org. Biomol. Chem. 2013, 11, 6300.  doi: 10.1039/c3ob41353e

    10. [10]

      (a) Rotstein, B. H. ; Stephenson, N. A. ; Vasdev, N. ; Liang, S. H. Nat. Commun. 2014, 5, 4365.
      (b) Calderwood, S. ; Collier, T. L. ; Gouverneur, V. ; Liang, S. H. ; Vasdev, N. J. Fluorine Chem. 2015, 178, 249.

    11. [11]

      Carrol, M. A.; Wood, R. A. Tetrahedron 2007, 63, 11349.  doi: 10.1016/j.tet.2007.08.076

    12. [12]

      Sandtorv, A. H.; Stuart, D. R. Angew. Chem., Int. Ed. 2016, 55, 15812.  doi: 10.1002/anie.201610086

    13. [13]

      Yang, Y.; Wu, X.; Han, J.; Mao, S.; Qian, X.; Wang, L. Eur. J. Org. Chem. 2014, 6854.

    14. [14]

      Riedmüller, S.; Nachtsheim, B. J. Synlett 2015, 26, 651.  doi: 10.1055/s-00000083

    15. [15]

      Pang, X.; Lou, Z.; Li, M.; Wen, L.; Chen, C. Eur. J. Org. Chem. 2015, 3361.

    16. [16]

      Geng, X.; Mao, S.; Chen, L.; Yu, J.; Han, J.; Hua, J.; Wang, L. Tetrahedron Lett. 2014, 55, 3856.  doi: 10.1016/j.tetlet.2014.05.082

    17. [17]

      Tinnis, F.; Stridfeldt, E.; Lundberg, H.; Adolfsson, H.; Olofsson, B. Org. Lett. 2015, 17, 2688.  doi: 10.1021/acs.orglett.5b01079

    18. [18]

      Lucchetti, N.; Scalone, M.; Fantasia, S.; Muiz, K. Angew. Chem., Int. Ed. 2016, 55, 13335.  doi: 10.1002/anie.201606599

    19. [19]

      Yang, Q.; He, X.-X.; Chang, J.; Wu, Q.; Zhang, B.-X. Chin. J. Org. Chem. 2011, 31, 1687 (in Chinese).
       

    20. [20]

      Guo, F.; Wang, L.; Wang, P.; Yu, J.; Han, J. Asian J. Org. Chem. 2012, 1, 218.  doi: 10.1002/ajoc.v1.3

    21. [21]

      Gonda, Zs.; Novák, Z. Chem. Eur. J. 2015, 21, 16801.  doi: 10.1002/chem.v21.47

    22. [22]

      Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.  doi: 10.1021/ja5124754

    23. [23]

      Reitti, M.; Villo, P.; Olofsson, B. Angew. Chem. Int. Ed. 2016, 55, 8928.  doi: 10.1002/anie.201603175

    24. [24]

      Li, X.; Li, L.; Mo, X.; Mo, D. Synth. Commun. 2016, 46, 963.  doi: 10.1080/00397911.2016.1181764

    25. [25]

      Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.  doi: 10.1002/anie.201300586

    26. [26]

      Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M. Chem. Commun. 2013, 49, 6752.  doi: 10.1039/c3cc43216e

    27. [27]

      (a) Cahard, E. ; Bremeyer, N. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 9284.
      (b) Sinai, Á. ; Mészáros, Á. ; Gáti, T. ; Kudar, V. ; Pallò, A. ; Novák, Z. Org. Lett. 2013, 15, 5654.
      (c) Wang, Y. ; Chen, C. ; Peng, J. ; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
      (d) Zhang, F. ; Das, S. ; Walkinshaw, A. J. ; Casitas, A. ; Taylor, M. ; Suero, M. G. ; Gaunt, M. J. J. Am. Chem. Soc. 2014, 136, 8851.

    28. [28]

      (a) Aradi, K. ; Bombicz, P. ; Novák, Z. J. Org. Chem. 2016, 81, 920.
      (b) Wen, R. -L. ; Dou, Q. ; Wang, Y. -C. ; Zhang, J. -W. ; Guo, W. -S. ; Li, M. J. Org. Chem. 2017, 82, 1428.
      (c) Wen, R. -L. ; Shen, Q. -Y. ; Guo, W. -S. ; Li, M. Org. Chem. Front. 2016, 3, 870.
      (d) Chi, Y. ; Yan, H. ; Zhang, W. -X. ; Xi, Z. Org. Lett. 2017, 19, 2694.

    29. [29]

      (a) Chi, Y. ; Yan, H. ; Zhang, W. -X. ; Xi, Z. Org. Lett. 2017, 19, 2694.
      (b) Oh, K. H. ; Kim, J. G. ; Park, J. K. Org. Lett. 2017, 19, 3994.

    30. [30]

      Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.  doi: 10.1021/jo501334u

    31. [31]

      Xiang, S.-K.; Li, J.-M.; Huang, H.; Feng, C.; Ni, H.-L.; Chen, X.-Z.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Redshaw, C. Adv. Synth. Catal. 2015, 357, 3435.  doi: 10.1002/adsc.201500651

    32. [32]

      (a) Beringer, F. M. ; Gindler, E. M. J. Am. Chem. Soc. 1955, 77, 3203.
      (b) Caserio, M. C. ; Glusker, D. L. ; Roberts, J. D. J. Am. Chem. Soc. 1959, 81, 336.

    33. [33]

      (a) Jalalian, N. ; Ishikawa, E. E. ; Silva, L. F. Jr. ; Olofson, B. Org. Lett. 2011, 13, 1552.
      (b) Jalalian, N. ; Petersen, T. B. ; Olofsson, B. Chem. Eur. J. 2012, 18, 14140.
      (c) Lindstedt, E. ; Ghosh, R. ; Olofsson, B. Org. Lett. 2013, 15, 6070.
      (d) Chan, L. ; McNally, A. ; Toh, Q. Y. ; Mendoza, A. ; Gaunt, M. J. Chem. Sci. 2015, 6, 1277.

    34. [34]

      Thorat, P. B.; Waghmode, N. A.; Karade, N. N. Tetrahedron Lett. 2014, 55, 5718.  doi: 10.1016/j.tetlet.2014.08.079

    35. [35]

      (a) Lubinovski, J. J. ; Knapczyk, J. W. ; Calderon, J. L. ; Petit, L. R. ; McEwen, W. E. J. Org. Chem. 1975, 40, 3010.
      (b) Ghosh, R. ; Lindstedt, E. ; Jalalian, N. ; Olofsson, B. ChemistryOpen 2014, 3, 54.

    36. [36]

      Sundalam, S. K.; Stuart, D. R. J. Org. Chem. 2015, 80, 6456.  doi: 10.1021/acs.joc.5b00907

    37. [37]

      Tolnai, G. L.; Nilsson, U. J.; Olofsson, B. Angew. Chem., Int. Ed. 2016, 55, 11226.  doi: 10.1002/anie.201605999

    38. [38]

      Kumar, D.; Arun, V.; Pilania, M.; Shekar, K. P. C. Synlett 2013, 24, 831.  doi: 10.1055/s-00000083

    39. [39]

      Xiong, B.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. ACS Catal. 2015, 5, 537.  doi: 10.1021/cs501523g

    40. [40]

      Bhattarai, B.; Tay, J.-H.; Nagorny, P. Chem. Commun. 2015, 51, 5398.  doi: 10.1039/C4CC08604J

    41. [41]

      Sandin, R. B.; Christiansen, R. G.; Brown, R. K.; Kirkwood, S. J. Am. Chem. Soc. 1947, 69, 1550.
       

    42. [42]

      Huang, X.; Zhu, Q.; Xu, Y. Synth. Commun. 2001, 31, 2823.  doi: 10.1081/SCC-100105332

    43. [43]

      Krief, A.; Dumont, W.; Robert, M. Synlett 2006, 484.
       

    44. [44]

      Wagner, A. M.; Sanford, M. S. J. Org. Chem. 2014, 79, 2263.  doi: 10.1021/jo402567b

    45. [45]

      Cullen, S. C.; Shekhar, S.; Nere, N. K. J. Org. Chem. 2013, 78, 12194.  doi: 10.1021/jo401868x

    46. [46]

      Saravanan, P.; Anbarasan, P. Adv. Synth. Catal. 2015, 357, 3521.  doi: 10.1002/adsc.201500606

    47. [47]

      Nikolaienko, P.; Yildiz, T.; Rueping, M. Eur. J. Org. Chem. 2016, 1091.
       

    48. [48]

      Xu, J.; Zhang, P. B.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y. J. Org. Chem. 2013, 78, 8176.  doi: 10.1021/jo4012199

    49. [49]

      Miralles, N.; Romero, R. M.; Fernandez, E.; Muniz, K. Chem. Commun. 2015, 51, 14068.  doi: 10.1039/C5CC04944J

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    12. [12]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    16. [16]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    17. [17]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(27)
  • Abstract views(2014)
  • HTML views(502)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return