Citation: Guan Daokun, Sun Shaofeng, Chen Jing, He Zuopeng, Kong Xiangkai, Wang Ningning, Yao Jianwen, Wang Hongbo. Synthesis and Evaluation of Antitumor Activity of Sorafenib Derivatives Possessing Diphenylamine and Thiourea Structures[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1414-1421. doi: 10.6023/cjoc201802005 shu

Synthesis and Evaluation of Antitumor Activity of Sorafenib Derivatives Possessing Diphenylamine and Thiourea Structures

  • Corresponding author: Yao Jianwen, jwyao@ytu.edu.cn Wang Hongbo, hongbowangwt@gmail.com
  • Received Date: 2 February 2018
    Revised Date: 22 March 2018
    Available Online: 13 June 2018

    Fund Project: the Key Technology Development Plan of Yantai City 2017ZH075the Key Research Project of Shandong Province 2017GSF18177the National Natural Science Foundation of 81728020Project supported by the National Natural Science Foundation of China (No. 81728020), the Key Research Project of Shandong Province (No. 2017GSF18177), and the Key Technology Development Plan of Yantai City (No. 2017ZH075)

Figures(4)

  • 17 novel sorafenib derivatives possessing diphenylamine and thiourea structures were designed and synthesized using 2-picolinic acid and substituted anilines as raw materials. The structures of the target compounds were all characterized by NMR and HRMS. In addition, the in vitro antiproliferation activity of the target compounds was studied in human colon cancer cell HCT116, human breast cancer cell line MDA-MB-231, human prostate cancer cell line PC-3 and mouse melanoma cell line B16BL6. The results showed that 1-(4-chloro-3-trifluoromethylphenyl)-3-(4-(2-(isopropylcarbamoyl)pyridine-4-amino)phenyl)thiourea (9g) had better inhibitory activity against four cell lines than the positive drug sorafenib, and 1-(3-trifluoromethyl-4-chlorophenyl)-3-{4-[2-(methylcarbamoyl)pyridine-4-amino]phenyl}thiourea (9b) and 1-(3-trifluoro-methyl-4-fluorophenyl)-3-{4-[2-(isopropylcarbamoyl)pyridine-4-amino]phenyl}thiourea (9j) had better inhibitory activity against MDA-MB-231, PC-3 and B16BL6 cell lines. The molecular docking of the active small molecule 9j was further studied, and its binding mode with the active site of the 3-D crystal structure (5HI2) of B-Raf receptor was discussed, which provided a useful reference for the design and synthesis of novel sorafenib derivatives in the future.
  • 加载中
    1. [1]

      Robert, R. J. Biochem. Biophys. Res. Commun. 2010, 399, 313.  doi: 10.1016/j.bbrc.2010.07.092

    2. [2]

      Rawan, A.; Rachel, H.; Sophia, E.; Elia, S.; Jacob, B. Oncotarget 2016, 7, 18694.
       

    3. [3]

      Huang, T. G.; Michael, K.; Zhuge, J.; Zhong, M. H.; Liu, D. L. J. Hematol. Oncol. 2013, 6, 30.  doi: 10.1186/1756-8722-6-30

    4. [4]

      Yang, Y. S.; Zhang, F.; Tang, D. J.; Yang, Y. H.; Zhu, H. L. Plos One 2014, 9, 1.

    5. [5]

      Wagle, N.; Van Allen, E. M.; Treacy, D. J.; Frederick, D. T.; Cooper, Z. A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E. M.; Sullivan, R. J.; Farlow, D. N.; Friedrich, D. C.; Anderka, K.; Perrin, D.; Johannessen, C. M.; McKenna, A.; Cibulskis, K.; Kryukov, G.; Hodis, E.; Lawrence, D. P.; Fisher, S.; Getz, G.; Gabriel, S. B.; Carter, S. L.; Flaherty, K. T.; Wargo, J. A.; Garraway, L. A. Cancer Discovery 2014, 4, 61.  doi: 10.1158/2159-8290.CD-13-0631

    6. [6]

      Rauch, J.; O'Neill, E.; Mack, B.; Matthias, C.; Munz, M.; Kolch, W.; Gires, O. Cancer Res. 2010, 70, 1679.  doi: 10.1158/0008-5472.CAN-09-2740

    7. [7]

      Shi, H.; Moriceau, G.; Kong, X.; Lee, M. K.; Lee, H.; Koya, R. C.; Ng, C.; Chodon, T.; Scolyer, R. A.; Dahlman, K. B.; Sosman, J. A.; Kefford, R. F.; Long, G. V.; Nelson, S. F.; Ribas, A.; Lo, R. S. Nat Commun. 2012, 3, 724.  doi: 10.1038/ncomms1727

    8. [8]

      Vasbinder, M. M.; Aquila, B.; Augustin, M.; Chen, H.; Cheung, T.; Cook, D.; Drew, L.; Fauber, B. P.; Glossop, S.; Grondine, M.; Hennessy, E.; Johannes, J.; Lee, S.; Lyne, P.; Mortl, M.; Omer, C.; Palakurthi, S.; Pontz, T.; Read, J.; Sha, L.; Shen, M.; Steinbacher, S.; Wang, H.; Wu, A.; Ye, M. J. Med. Chem. 2013, 56, 1996.  doi: 10.1021/jm301658d

    9. [9]

      Tang, J.; Hamajima, T.; Nakano, M.; Sato, H.; Dickerson, S. H.; Lackey, K. E. Bioorg. Med. Chem.Lett. 2008, 18, 4610.  doi: 10.1016/j.bmcl.2008.07.019

    10. [10]

      Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M.; Lynch, M. Mol. Cancer Ther. 2008, 7, 3129.  doi: 10.1158/1535-7163.MCT-08-0013

    11. [11]

      Ambrosini, G.; Cheema, H. S.; Seelman, S.; Teed, A.; Sambol, E. B.; Singer, S.; Schwartz, G. K. Mol. Cancer Ther. 2008, 7, 890.  doi: 10.1158/1535-7163.MCT-07-0518

    12. [12]

      Hong, D. S.; Cabanillas, M. E.; Wheler, J.; Naing, A.; Tsimberidou, A. M.; Ye, L.; Waguespack, S. G.; Hernandez, M.; El Naggar, A. K.; Bidyasar, S.; Wright, J.; Sherman, S. I.; Kurzrock, R. J. Clin. Endocrinol. Metab. 2011, 96, 997.  doi: 10.1210/jc.2010-1899

    13. [13]

      Adnane, L.; Trail, P. A.; Taylor, I.; Wilhelm, S. M. Method Enzymol. 2006, 407, 597.  doi: 10.1016/S0076-6879(05)07047-3

    14. [14]

      Jean, G. W.; Mani, R. M.; Jaffry, A.; Khan, S. A. Clin. Rev. Educ. 2016, 2, 529.
       

    15. [15]

      Gedaly, R.; Angulo, P.; Hundley, J.; Daily, M. F.; Chen, C.; Koch, A.; Evers, B. M. Anticancer Res. 2010, 30, 4951.
       

    16. [16]

      Richetta, A. G.; Maiani, E.; Carboni, V.; Carlomagno, V.; Cimillo, M.; Mattozzi, C.; Calvieri, S. Eur. J. Dermatol. 2012, 55, 1082.

    17. [17]

      Justin D.; Vijay G.; Wang X. D.; Laurence H. H.; Gary A. F. Bioorg. Med. Chem. 2010, 18, 292.  doi: 10.1016/j.bmc.2009.10.055

    18. [18]

      Yao, J.; Chen, J.; He, Z.; Sun, W.; Xu, W. Bioorg. Med. Chem. 2012, 20, 2923.  doi: 10.1016/j.bmc.2012.03.018

    19. [19]

      Kong, X.; Yao, Z.; He, Z.; Xu, W.; Yao, J. MedChemComm 2015, 6, 867.  doi: 10.1039/C4MD00536H

    20. [20]

      Scott, A. F.; Daniel, M. W.; Aysxegül, Ö.; Matthew, J. W. C. K.; Yin, J. P.; Ivana, Y.; Gabriele, S.; John, D. M.; Juliann, C.; Philip, J. S.; Lee, A. A.; Yan, J. B.; Kyung, S.; Georgia, H.; Charles, E.; Christine, Y.; Andrey, S. S.; Gerard, M.; Nicholas, J. S.; Sarah, G. H.; Shiva, M. Cancer Cell 2016, 29, 477.  doi: 10.1016/j.ccell.2016.02.010

    21. [21]

      Harry, S. M.; Melvin, L. Heterocycl. Basic Comd. 1954, 20, 285.

    22. [22]

      Wei, L.; Xin, Z.; Lu, D.; Limin, S.; Chen, X. M.; Ping, G.; Sun, T. M. Molecules 2011, 16, 5134.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    6. [6]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    11. [11]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    19. [19]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    20. [20]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

Metrics
  • PDF Downloads(11)
  • Abstract views(1334)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return