Citation: Sun Haiyan, Sun Hongshun, Liu Mingzhen, Huang Wei, Yang Guangfu. Lead Optimization and Antiproliferative Activity Using a New Dithiocarbamates Substructure[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2067-2075. doi: 10.6023/cjoc201801001 shu

Lead Optimization and Antiproliferative Activity Using a New Dithiocarbamates Substructure

  • Corresponding author: Huang Wei, weihuangwuhan@126.com Yang Guangfu, gfyang@mail.ccnu.edu.cn
  • Received Date: 2 January 2018
    Revised Date: 15 March 2018
    Available Online: 13 August 2018

    Fund Project: the Natural Science Foundation of Hubei Province 2016CFB562the National Natural Science Foundation of China 201502063Project supported by the National Natural Science Foundation of China (No. 201502063) and the Natural Science Foundation of Hubei Province (No. 2016CFB562)

Figures(4)

  • In this work, a series of dithiocarbamate derivatives bearing diverse quinazolinones, benzoxazinones, and coumarin moieties were designed and synthesized via a one-pot three-component reaction. These compounds produced good yields and functioned quickly under mild conditions, and the desired products were readily isolated. Their in vitro antitumor activities were evaluated by the methyl thiazolyl tetrazolium (MTT) method against hepatoma carcinoma cells HCCLM-7, cervical carcinoma cells Hela, mammary adenocarcinoma cells MDA-MB-435S, colon carcinoma cells SW-480, laryngocarcinoma cells Hep-2, and mammary adenocarcinoma cells MCF-7. 3 compounds were identified as the most promising candidates, due to their high potency and broad-spectrum antiproliferative activity (IC50:3.5~13.5 μmol·L-1). The activities of some lead compounds were more than 10-fold more potent than that of positive control 5-fluorouracil (5-FU) (IC50:8.1~128.7 μmol·L-1). These results indicated that the dithiocarbamate (DTC) derivatives bearing fused heterocyclic moieties could be used as lead for further developing new antitumor active compounds.
  • 加载中
    1. [1]

      Li, R.-D.; Wang, Y.-Q.; Ge, Z.-M.; Li, R.-T. Chin. J. Org. Chem. 2015, 35, 1805(in Chinese).

    2. [2]

      Bala, V.; Gupta, G.; Sharma, V. L. Mini-Rev. Med. Chem. 2014, 14, 1021.  doi: 10.2174/1389557514666141106130146

    3. [3]

      Room, R.; Babor, T.; Rehm, J. Lancet 2005, 365, 519.  doi: 10.1016/S0140-6736(05)70276-2

    4. [4]

      Sauna, Z. E.; Shukla, S.; Ambudkar, S. V. Mol. Biosyst. 2005, 1, 127.  doi: 10.1039/b504392a

    5. [5]

      Schenk, H.; Klein, M.; Erdbrügger, W.; Dröge, W.; Schul-ze-Osthoff, K. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1672.  doi: 10.1073/pnas.91.5.1672

    6. [6]

      Gaudernak, E.; Seipelt, J.; Triendl, A.; Grassauer, A.; Kuechler, E. J. Virol. 2002, 76, 6004.  doi: 10.1128/JVI.76.12.6004-6015.2002

    7. [7]

      Kraljević, T. G.; Harej, A.; Sedić, M.; Pavelić, S. K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Eur. J. Med. Chem. 2016, 124, 794.  doi: 10.1016/j.ejmech.2016.08.062

    8. [8]

      Mo, S.; Ding, Y.; Zhang, G.; Zhang, Z.; Shao, X.-B.; Li, Q.-Y.; Yang, X.-J.; Chen, F. Chin. J. Org. Chem. 2017, 37, 1000(in Chinese).

    9. [9]

      (a) Fu, D. J. ; Zhang, S. Y. ; Liu, Y. C. ; Zhang, L. ; Liu, J. J. ; Song, J. ; Zhao, R. H. ; Li, F. ; Sun H. H. ; Liu, H. M. ; Zhang, Y. B. Bioorg. Med. Chem. Lett. 2016, 26, 3918.
      (b) Ding, P. P. ; Gao, M. ; Mao, B. B. ; Cao, S. L. ; Liu, C. H. ; Yang, C. R. ; Li, Z. F. ; Liao, J. ; Zhao, H. C. ; Li, Z. Eur. J. Med. Chem. 2016, 108, 364.
      (c) Fu, D. J. ; Zhang, L. ; Song, J. ; Mao, R. W. ; Zhao, R. H. ; Liu, Y. C. ; Hou, Y. H. ; Li, J. H. ; Yang J. J. ; Jin, C. Y. ; Li, P. ; Zi, X. L. ; Liu, H. M. ; Zhang, S. Y. ; Zhang, Y. B. Eur. J. Med. Chem. 2017, 127, 87.
      (d) Jian, F. -F. ; Xu, L. -Z. ; Wen, L. -R. ; Zhu, C. -Y. Chin. J. Org. Chem. 2005, 25, 423(in Chinese). (建方方, 许良忠, 文丽荣, 朱崇毅, 有机化学, 2005, 25, 423. )

    10. [10]

      Carta, F.; Aggarwal, M.; Maresca, A.; Scozzafava, A.; McKenna, R.; Masini, E.; Supuran, C. T. J. Med. Chem. 2012, 55, 1721.  doi: 10.1021/jm300031j

    11. [11]

      Qian, Y.; Ma, G. Y.; Yang, Y.; Chen, K.; Zheng, Q. Z.; Mao, W. J.; Shi, L.; Zhao, J.; Zhu, H. L. Bioorg. Med. Chem. 2010, 18, 4310.  doi: 10.1016/j.bmc.2010.04.091

    12. [12]

      Zheng, Y. C.; Duan, Y. C.; Ma, J. L.; Xu, R. M.; Zi, X.; Lv, W. L.; Wang, M. M.; Ye, X. W.; Zhu, S.; Mobley, D.; Zhu, Y. Y.; Wang, J. W.; Li, J. F.; Wang, Z. R.; Zhao, W.; Liu, H. M. J. Med. Chem. 2013, 56, 8543.  doi: 10.1021/jm401002r

    13. [13]

      Li, R. D.; Zhang, X.; Li, Q. Y.; Ge, Z. M.; Li, R. Bioorg. Med. Chem. Lett. 2011, 21, 3637.  doi: 10.1016/j.bmcl.2011.04.096

    14. [14]

      Zheng, Y. C.; Wang, L. Z.; Zhao, L. J.; Zhao, L. J.; Zhan, Q. N.; Ma, J. L.; Zhang, B.; Wang, M. M.; Wang, Z. R.; Li, J. F.; Liu, Y.; Chen, Z. S.; Shen, D. D.; Liu, X. Q.; Ren, M.; Lv, W. L.; Zhao, W.; Duan, Y. C.; Liu, H. M. Cell. Physiol. Biochem. 2016, 38, 185.  doi: 10.1159/000438620

    15. [15]

      Kamal, A.; Sathish. M., N ayak, V. L.; Srinivasulu, V.; Kavitha, B.; Tangella, Y.; Thummuri, D.; Bagul, C.; Shankaraiah, N., N agesh, N. Bioorg. Med. Chem. 2015, 23, 5511.  doi: 10.1016/j.bmc.2015.07.037

    16. [16]

      Gaspari, P.; Banerjee, T.; Malachowski, W. P.; Muller, A. J.; Prendergast, G. C.; DuHadaway, J.; Bennett, S.; Donovan, A. M. J. Med. Chem. 2006, 49, 684.  doi: 10.1021/jm0508888

    17. [17]

      Buac, D.; Schmitt, S.; Ventro, G.; Kona, F. R.; Dou, Q. P. Mini-Rev. in Med. Chem. 2012, 12, 1193.  doi: 10.2174/138955712802762040

    18. [18]

      Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf Z.; Iqbal, J.; Saeed, A. Bioorg. Med. Chem. 2016, 24, 2361.  doi: 10.1016/j.bmc.2016.03.031

    19. [19]

      Macías, F. A.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J. M. Nat. Prod. Rep. 2009, 26, 478.  doi: 10.1039/b700682a

    20. [20]

      Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; González, M. C.; Córdova-Guerrero, I.; Teissier García, A. G.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472.  doi: 10.1039/C4NP00162A

    21. [21]

      Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806.  doi: 10.1016/j.bmc.2014.05.032

    22. [22]

      Huang, W.; Ding, Y.; Miao, Y.; Yang, G. F. Eur. J. Med. Chem. 2009, 44, 3687.  doi: 10.1016/j.ejmech.2009.04.004

    23. [23]

      Huang, W.; Chen, Q.; Yang, W. C.; Yang, G. F. Eur. J. Med. Chem. 2013, 66, 161.  doi: 10.1016/j.ejmech.2013.05.037

    24. [24]

      Huang, W.; Liu, M. Z.; Li, Y.; Tan, Y.; Yang, G. F. Bioorg. Med. Chem. 2007, 15, 5191.  doi: 10.1016/j.bmc.2007.05.022

    25. [25]

      Liu, G.; Song, B. A.; Sang, W. J.; Yang, S.; Jin, L. H.; Ding, X. Chin. J. Org. Chem. 2004, 24, 1296(in Chinese).  doi: 10.3321/j.issn:0253-2786.2004.10.027

    26. [26]

      Clemence, F.; Le Martret, O.; Collard, J. J. Heterocycl. Chem. 1984, 21, 1345.  doi: 10.1002/jhet.5570210520

    27. [27]

      Leonetti, F.; Favia, A.; Rao, A.; Aliano, R.; Paluszcak, A.; Hartmann, R. W.; Carotti, A. J. Med. Chem. 2004, 27, 6792.

    28. [28]

      Li, R. T.; Cai, M. S. Synth. Commun. 1998, 28, 295.  doi: 10.1080/00397919808005722

    29. [29]

      (a) Full crystallographic details has been deposited at the Cambridge Crystallographic Data Center and allocated the deposition number CCDC 715987(2h).
      (b) Sheldrick, G. M. SHELXTL (Version 5. 0), University of Gőttingen, Germany, 2001.
      (c) Bruker SMART V5. 628, SAINT V6. 45. & SADABS Bruker AXS Inc., Madison, Wisconsin, USA, 2001.

    30. [30]

      Mosmann, T. J. Immunol. Methods 1983, 65, 55.  doi: 10.1016/0022-1759(83)90303-4

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    2. [2]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    6. [6]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    7. [7]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    10. [10]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    11. [11]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    12. [12]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    13. [13]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    14. [14]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    15. [15]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    18. [18]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    19. [19]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    20. [20]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

Metrics
  • PDF Downloads(2)
  • Abstract views(845)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return