Citation: Lu Shengle, Tu Xianxia, Liu Weishun, Shen Liting, Mao Shanjian, Deng Guisheng. Transition Metal-Free-Catalyzed Regioselective Reversal in the Cyclization of 2-Diazo-3, 5-dioxo-6-ynoates/ynones/ynamide: Synthesis of Diazo γ-Pyrones and Diazo 3(2H)-Furanones[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1663-1672. doi: 10.6023/cjoc201712014 shu

Transition Metal-Free-Catalyzed Regioselective Reversal in the Cyclization of 2-Diazo-3, 5-dioxo-6-ynoates/ynones/ynamide: Synthesis of Diazo γ-Pyrones and Diazo 3(2H)-Furanones

  • Corresponding author: Deng Guisheng, gsdeng@hunnu.edu.cn
  • Received Date: 7 December 2017
    Revised Date: 6 March 2018
    Available Online: 12 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21372071) and the Hunan Provincial Natural Science Foundation (No. 2016JJ2080)the National Natural Science Foundation of China 21372071the Hunan Provincial Natural Science Foundation 2016JJ2080

Figures(4)

  • For HSbF6/EtOH system, diazo γ-pyrones were cleanly obtained starting from 2-diazo-3, 5-dioxo-6-ynoates/ynones/ynamide at 80℃, whereas diazo 3(2H)-furanones were predominantly generated in HOAc-Et3N-1, 2-dichloroethane system at 25℃. These diazo compounds can undergo an efficient Rh(Ⅱ)-catalyzed intermolecular cyclopropanation with alkene.
  • 加载中
    1. [1]

      For 4-pyrone see: (a) Caturla, F. ; Jiménez, J. -M. ; Godessart, N. ; Amat, M. ; Cárdenas, A. ; Soca, L. ; Beleta, J. ; Ryder, H. ; Crespo, M. I. J. Med. Chem. 2004, 47, 3874.
      (b) Abe, I. ; Utsumi, Y. ; Oguro, S. ; Morita, H. ; Sano, Y. ; H. J. Am. Chem. Soc. 2005, 127, 1362.
      (c) Puerta, D. T. ; Mongan, J. ; Tran, B. L. ; McCammon, J. A. ; Cohen, S. M. J. Am. Chem. Soc. 2005, 127, 14148.
      (d) Sibi, M. P. ; Zimmerman, J. J. Am. Chem. Soc. 2006, 128, 13346.
      (e) Hollick, J. J. ; Rigoreau, L. J. ; Cano-Soumillac, C. ; Cockcroft, X. ; Curtin, N. J. ; Frigerio, M. ; Golding, B. T. ; Guiard, S. ; Hardcastle, I. R. ; Hickson, I. J. Med. Chem. 2007, 50, 1958.
      For 3(2H)-furanone see: (f) Li Y. ; Hale K. J. Org. Lett. 2007, 9, 1267.
      (g) Mitchell, J. M. ; Finney, N. S. Org. Biomol. Chem. 2005, 3, 4274.
      (h) Hayashi, Y. ; Shoji, M. ; Yamaguchi, S. ; Mukaiyama, T. ; Yamaguchi, J. ; Kakeya, H. ; Osada, H. Org. Lett. 2003, 5, 2287.

    2. [2]

      (a) Yamamura, S. ; Nishiyama, S. Bull. Chem. Soc. Jpn. 1997, 70, 2025.
      (b) Sharma, P. ; Powell, K. J. ; Burnley, J. ; Awaad, A. S. ; Moses, J. E. Synthesis 2011, 2865.
      (c) Hayakawa, I. ; Takemura, T. ; Fukasawa, E. ; Ebihara, Y. ; Sato, N. ; Nakamura, T. ; Suenaga, K. ; Kigoshi, H. Bull. Chem. Soc. Jpn. 2012, 85, 1077.
      (d) Martens, S. ; Mithofer, A. Phytochemicals 2005, 66, 2399.
      (e) Veitch, N. C. ; Grayer, R. J. Nat. Prod. Rep. 2008, 25, 555.
      (f) Crozier, A. ; Jaganath, I. B. ; Clifford, M. N. Nat. Prod. Rep. 2009, 26, 1001.
      (g) Hansen, M. R. ; Hurley, L. H. Acc. Chem. Res. 1996, 29, 249.

    3. [3]

      For 4-pyrone see: (a) Grarey, D. ; Ramirez, M. ; Gonzales, S. ; Wertsching, A. ; Tith, S. ; Keefe, K. ; Pea, M. R. J. Org. Chem. 1996, 61, 4853.
      (b) Ishibashi, Y. ; Ohba, S. ; Nishiyama, S. ; Yamamura, S. Tetrahedron Lett. 1996, 37, 2997.
      (c) Jo, Y. J. ; Cho, I. H. ; Song, C. K. ; Shin, H. W. ; Kim, Y. S. J. Food Sci. 2011, 76, C368.
      (d) Li, D. -F. ; Hu, P. -P. ; Liu, M. -S. ; Kong, X. -L. ; Zhang, J. -C. ; Hider, R. C. ; Zhou, T. J. Agric. Food. Chem. 2013, 61, 6597.
      (e) Shahrisa, A. ; Esmati, S. ; Miri, R. ; Firuzi, O. ; EdrakiN, N. ; Nejati, M. Eur. J. Med. Chem. 2013, 66, 388.
      For 3(2H)-furanone see: (f) Shin, S. S. ; Byun, Y. ; Lim, K. M. ; Choi, J. K. ; Lee, K. -W. ; Moh, J. H. ; Kim, J. K. ; Jeong, Y. S. ; Kim, J. Y. ; Choi, Y. H. ; Koh, H. -J. ; Park, Y. -H. ; Oh, Y. I. ; Noh, M. -S. ; Chung, S. J. Med. Chem. 2004, 47, 792.

    4. [4]

      Kankanala, J.; Kirby, K. A.; Liu, F.; Miller, L.; Nagy, E.; Wilson, D. J.; Parniak, M. A.; Sarafianos, S. G.; Wang, Z. J. Med. Chem. 2016, 59, 5051.  doi: 10.1021/acs.jmedchem.6b00465

    5. [5]

      For 4-pyrone see: (a) Obydennov, D. L. ; Pan'kina, E. O. ; Sosnovskikh, V. Y. J. Org. Chem. 2016, 81, 12532.
      (b) Dong, S. ; Fang, C. ; Tang, W. ; Lu, T. ; Du, D. Org. Lett. 2016, 18, 3882.
      (c) Henrot, M. ; Jean, A. ; Peixoto, P. A. ; Maddaluno, J. ; Paolis, M. D. J. Org. Chem. 2016, 81, 5190.
      (d) Danda, A. ; Kesave-Reddy, N. ; Golz, C. ; Strohmann, C. ; Kumar, K. Org. Lett. 2016, 18, 2632.
      (e) Beye, G. E. ; Karagiannis, A. ; Kazemeini, A. ; Ward, D. E. Can. J. Chem. 2012, 90, 954.
      For 3(2H)-furanone see: (f) Sadamitsu, Y. ; Komatsuki, K. ; Saito, K. ; Yamada, T. Org. Lett. 2017, 19, 3191.
      (g) Qiu, H. ; Deng, Y. ; Marichev, K. O. ; Doyle, M. P. J. Org. Chem. 2017, 82, 1584.
      (h) He, H. ; Qi, C. ; Hu, X. ; Ouyang, L. ; Xiong, W. ; Jiang, H. J. Org. Chem. 2015, 80, 4957.
      (i) Inagaki, S. ; Nakazato, M. ; Fukuda, N. ; Tamura, S. ; Kawano, T. J. Org. Chem. 2017, 82, 5583.

    6. [6]

      (a) Marei, M. G. ; El-Ghanam, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 107, 1.
      (b) Marei, M. G. ; El-Ghanam, M. Bull. Chem. Soc. Jpn. 1992, 65, 3509.
      (c) Marei, M. G. ; Aly, D. M. ; Mishrikey, M. M. Bull. Chem. Soc. Jpn. 1992, 65, 3419.
      (d) Marei, M. G. ; Mishrikey, M. M. ; El-Kholy, I. E. J. Heterocycl. Chem. 1986, 23, 1849.
      (e) El-Kholy, I. E. ; Mishrikey, M. M. ; Marei, M. G. J. Heterocycl. Chem. 1982, 19, 1421.
      (f) Kuroda, H. ; Izawa, H. Chin. J. Chem. 2008, 26, 1944.
      (g) Yoshida, M. ; Fujino, Y. ; Doi, T. Org. Lett. 2011, 13, 4526.
      (h) Yoshida, M. ; Fujino, Y. ; Saito, K. ; Doi, T. Tetrahedron 2011, 67, 9993.
      (i) Kuroda, H. ; Izawa, H. Bull. Chem. Soc. Jpn. 2007, 80, 780.
      (j) Preindl, J. ; Jouvin, K. ; Laurich, D. ; Seidel, G. ; Fürstner, A. Chem. -Eur. J. 2015, 21, 1.
      (k) García, H. ; Iborra, S. ; Primo, J. ; Miranda, M. A. J. Org. Chem. 1986, 51, 4432.
      (l) Brennan, C. M. ; Johnson, C. D. ; McDonnell, P. D. J. Chem. Soc., Perkin Trans. 2 1989, 957.
      (m) Liu, C. ; Zhang, Z. ; Zhang, J. ; Liu X. ; Xie, M. Chin. J. Chem. 2014, 32, 1233.

    7. [7]

      Doyle, M. P. ; McKervey, M. A. ; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.

    8. [8]

      Wang, F.; Lu, S.; Chen, B.; Zhou, Y.; Yang, Y.; Deng, G. Org. Lett. 2016, 18, 6248.  doi: 10.1021/acs.orglett.6b02973

    9. [9]

      Deng, G.; Wang, F.; Lu, S.; Cheng, B. Org. Lett. 2015, 17, 4651.  doi: 10.1021/acs.orglett.5b02369

    10. [10]

      (a) Yoshida, M. ; Fujino, Y. ; Doi, T. Org. Lett. 2011, 13, 4526.
      (b) Preindl, J. ; Jouvin, K. ; Laurich, D. ; Seidel, G. ; Fürstner, A. Chem.-Eur. J. 2016, 22, 237.

    11. [11]

      Vasilyev, A. V.; Walspurger, S.; Chassaing, S.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2007, 5740.

    12. [12]

      Vasilyev, A. V.; Walspurger, S.; Haouas, M.; Sommer, J.; Pale, P.; Rudenko, A. P. Org. Biomol. Chem. 2004, 2, 3483.  doi: 10.1039/b412323a

    13. [13]

      (a) Kawata, M. ; Ten-no, S. ; Kato, S. ; Hirata, F. J. Phys. Chem. 1996, 100, 1111.
      (b) Bordwell, F. G. ; McCallum, R. J. ; Olmstead, W. N. J. Org. Chem. 1984, 49, 1424.
      (c) Shukla, S. K. ; Kumar, A. J. Phys. Chem. B 2013, 117, 2456.
      (d) Bachrach, S. M. ; Dzierlenga, M. W. J. Phys. Chem. A 2011, 115, 5674.
      (e) Murłowska, K. ; Sadlej-Sosnowska, N. J. Phys. Chem. A 2005, 109, 5590.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    11. [11]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    15. [15]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    16. [16]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(9)
  • Abstract views(870)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return