Citation: Wang Tao, Xie Zhongpao, Zeng Ming, Cui Dongmei. Advances in the Synthesis of Nitrogen Zole s-Triazine Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 983-998. doi: 10.6023/cjoc201711046 shu

Advances in the Synthesis of Nitrogen Zole s-Triazine Compounds

  • Corresponding author: Cui Dongmei, cuidongmei@zjut.edu.cn
  • Received Date: 28 November 2017
    Revised Date: 8 January 2018
    Available Online: 26 May 2018

Figures(36)

  • Nitrogen zole s-triazine derivatives display several biological activities such as antiproliferative, antioxidant, antiviral, antitumor and so on. Accordingly, much effort has been made towards the development of diverse synthetic methods for nitrogen zole s-triazines. The advancements in synthesis of nitrogen zole s-triazine compounds are summarized, including tetrazolo-s-triazines, triazolo-s-triazines and diazolo-s-triazines. At last the disadvantages of these synthetic methods are discussed and prospected to the future development.
  • 加载中
    1. [1]

      Wang, G.-R.; Zeng, H.-P. Chin. J. Org. Chem. 2009, 29, 1115(in Chinese).
       

    2. [2]

      Charoensirisomboon, P.; Saito, H.; Inoue, T.; Oishi, Y.; Mori, K. Polymer 1998, 39, 2089.  doi: 10.1016/S0032-3861(97)00530-2

    3. [3]

    4. [4]

      El, F. A.; Soliman, S. M.; Ghabbour, H. A.; Elnakady, Y. A.; Mohaya, T. A.; Siddiqui, M. R. H.; Albericio, F. J. Mol. Struct. 2016, 1125, 121.  doi: 10.1016/j.molstruc.2016.06.061

    5. [5]

      Bekircan, O.; Küxük, M.; Kahveci, B.; Kolaylı, S. Arch. Pharm. Chem. Life Sci. 2005, 338, 365.  doi: 10.1002/(ISSN)1521-4184

    6. [6]

      Bera, H.; Tan, B. J.; Sun, L. Y.; Dolzhenko, A. V.; Chui, W. K.; Chiu, G. N. C. Eur. J. Med. Chem. 2013, 67, 325.  doi: 10.1016/j.ejmech.2013.06.051

    7. [7]

      (a) Federico, S. ; Paoletta, S. ; Cheong, S. L. ; Pastorin, G. ; Cacciari, B. ; Stragliotto, S. ; Klotz, K. N. ; Siegel, J. ; Gao, Z. G. ; Jacobson, K. A. ; Moro, S. ; Spalluto, G. J. Med. Chem. 2011, 54, 877.
      (b) Pastorin, G. ; Federico, S. ; Paoletta, S. ; Corradino, M. ; Cateni, F. ; Cacciari, B. ; Klotz, K. N. ; Gao, Z. G. ; Jacobson, K. A. ; Spalluto, G. ; Moro, S. Bioorg. Med. Chem. 2010, 18, 2524.
      (c) Jörg, M. ; May, L. T. ; Mak, F. S. ; Lee, K. C. K. ; Miller, N. D. ; Scammells, P. J. ; Capuano, B. J. Med. Chem. 2015, 58, 718.
      (d) Jörg, M. ; Shonberg, J. ; Mak, F. S. ; Miller, N. D. ; Elizabeth, Y. ; Scammells, P. J. ; Capuano, B. Bioorg. Med. Chem. 2013, 23, 3427.
      (e) Federico, S. ; Antonella, C. ; Porta, N. ; Redenti, S. ; Pastorin, G. ; Cacciari, B. ; Klotz, K. N. ; Moro, S. ; Spalluto, G. Eur. J. Med. Chem. 2016, 108, 529.

    8. [8]

      (a) Bera, H. ; Chui, W. K. ; Gupta, S. D. ; Dolzhenko, A. V. ; Sun, L. Y. Med. Chem. Res. 2013, 22, 6010.
      (b) Bera, H. ; Lee, M. H. ; Sun, L. Y. ; Dolzhenko, A. V. ; Chui, W. K. Bioorg. Chem. 2013, 50, 34.

    9. [9]

      Golankiewicz, B.; Januszczyk, P.; Ikeda, S.; Balzarini, J.; Clercq, E. D. J. Med. Chem. 1995, 38, 3558.  doi: 10.1021/jm00018a015

    10. [10]

    11. [11]

      Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Lu, J.; Averill, A.; Almassy, R.; Chu, S. S. Bioorg. Med. Chem. Lett. 2008, 18, 619.  doi: 10.1016/j.bmcl.2007.11.074

    12. [12]

      Popowycz, F.; Schneider, C.; DeBonis, S.; Skoufias, D. A.; Kozielski, F.; Galmarini, C. M.; Joseph, B. Bioorg. Med. Chem. 2009, 17, 3471.  doi: 10.1016/j.bmc.2009.03.007

    13. [13]

      (a) Raboisson, P. ; Schultz, D. ; Muller, C. ; Reimund, J. Marie. ; Pinna, G. ; Mathieu, R. ; Bernard, P. ; Do, Q. T. ; DesJarlais. R. L. ; Justiano, H. ; Lugnier, C. ; Bourguignon, J. J. Eur. J. Med. Chem. 2008, 43, 816.
      (b) Nie, Z. ; Perretta, C. ; Erickson, P. ; Margosiak, S. ; Almassy, R. ; Lu, J. ; Averill, A. ; Yagera, K. M. ; Chua, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 4191.
      (c) Sun, L. Y. ; Bera, H. ; Chui, W. K. Eur. J. Med. Chem. 2013, 65, 1.
      (d) Laufer, R. ; Li, S. Wan. ; Liu, Y. ; Ng, G. ; Lang, Y. H. ; Feher, M. ; Brokx, R. ; Beletskaya, I. ; Hodgson, R. ; Mao, G. D. ; Plotnikova, O. ; Awrey, D. E. ; Mason, J. M. ; Wei, X. ; Lin, D. C. C. ; Che, Y. ; Kiarash, R. ; Madeira, B. ; Fletcher, G. C. ; Mak, T. W. ; Bray, M. R. ; Pauls, H. W. Bioorg. Med. Chem. Lett. 2016, 26, 3562.
      (e) Senga, K. ; O'Brien, D. E. ; Scholten, M. B. ; Novinson, T. ; Miller, J. P. ; Robins, R. K. J. Med. Chem. 1982, 25, 243.

    14. [14]

    15. [15]

      Hafez, E. A. A.; Elmoghayar, M. R. H.; Ramiz, M. M. M. Liebigs Ann. Chem. 1987, 65.
       

    16. [16]

      Kessenich, E.; Polborn, K.; Schulz, A. Inorg. Chem. 2001, 40, 1102.  doi: 10.1021/ic000526k

    17. [17]

      Chapyshev, S. V.; Chernyak, A. V.; Yakushchenko, I. K. J. Heterocycl. Chem. 2016, 53, 970.  doi: 10.1002/jhet.v53.3

    18. [18]

      Fedorov, B. S.; Fadeev, M. A.; Gidaspov, A. A.; Kosareva, E. A.; Bakharev, V. V. Chem. Heterocycl. Compd. 2005, 41, 228.  doi: 10.1007/s10593-005-0132-5

    19. [19]

      Bakharev, V. V.; Ghidaspov, A. A.; Krivolapov, D. B.; Mironova, E. V.; Litvinov, I. A. Chem. Heterocycl. Compd. 2006, 42, 1051.  doi: 10.1007/s10593-006-0203-2

    20. [20]

      Parfenov, V. E.; Bakharev, V. V.; Zavodskaya, A. V.; Selezneva, E. V.; Gidaspov, A. A.; Suponitsky, K. Y. Tetrahedron Lett. 2014, 55, 7072.  doi: 10.1016/j.tetlet.2014.10.143

    21. [21]

      Bokaldere, R. P.; Grinshtein, V. Y. Khim. Geterotsikl. Soedin. 1970, 6, 563.
       

    22. [22]

      Dolzhenko, A. V.; Dolzhenko, A. V.; Chui, W. K. Tetrahedron 2007, 63, 12888.  doi: 10.1016/j.tet.2007.10.046

    23. [23]

      Taylor, E. C.; Hendess, R. W. J. Am. Chem. Soc. 1965, 87, 1980.  doi: 10.1021/ja01087a022

    24. [24]

      Evers, R.; Fischer, E. J. Prakt. Chem. 1985, 327, 609.  doi: 10.1002/(ISSN)1521-3897

    25. [25]

      Dorokhov, V. A.; Amamchyan, A. R.; Bogdanov, V. S. Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 2386.

    26. [26]

      Dorokhov, V. A.; Amamchyan, A. R.; Bogdanov, V. S.; Ugrak, B. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 241.

    27. [27]

    28. [28]

      Kalinin, D. V.; Kalinina, S. A.; Dolzhenko, A. V. Heterocycles 2012, 85, 2515.  doi: 10.3987/COM-12-12542

    29. [29]

      Kalinin, D. V.; Kalinina, S. A.; Dolzhenko, A. V. Heterocycles 2013, 87, 147.  doi: 10.3987/COM-12-12601

    30. [30]

      Zohdi, H. F. J. Chem. Res., Synop. 1998, 536.
       

    31. [31]

      Dolzhenko, A. V.; Tan, B. J.; Dolzhenko, A. V.; Chiu, G. N. C.; Chui, W. K. J. Fluorine Chem. 2008, 129, 429.  doi: 10.1016/j.jfluchem.2008.02.007

    32. [32]

      Lalezari, I.; Nabahi, S. J. Heterocycl. Chem. 1980, 17, 1121.  doi: 10.1002/jhet.v17:5

    33. [33]

      Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Inoue, Y.; Fukaya, C.; Naito, Y.; Imagawa, T.; Nakamura, N. J. Med. Chem. 1998, 41, 2985.  doi: 10.1021/jm970759u

    34. [34]

      Bereczm, G.; Pongó, L.; Kövesdi, I.; Reiter, J. J. Heterocycl. Chem. 2002, 39, 327.  doi: 10.1002/jhet.5570090116

    35. [35]

      Hirata, T.; Twanmoh, L. M.; Wood, H. R.; Jr.; Goldin, A.; Driscoll, J. S. J. Heterocycl. Chem. 1972, 9, 99.  doi: 10.1002/jhet.5570100210

    36. [36]

      Hirata, T.; Wood, H. B.; Driscoll, J. S. J. Chem. Soc., Perkin Trans. 1 1973, 1209.
       

    37. [37]

      Okide, G. B. J. Heterocycl. Chem. 1994, 31, 535.  doi: 10.1002/jhet.v31:2

    38. [38]

      Kaddachi, M. T.; Zouari, S.; Benammar, H.; Cossy, J.; Kahn, P. J. Soc. Chim. Tunis. 2001, 4, 1171.
       

    39. [39]

      Demidchuk, B. A.; Brovarets, V. S.; Chernega, A. N.; Howard, J. A. K.; Vasilenko, A. N.; Turov, A. V.; Drach, B. S. Russ. J. Gen. Chem. 2007, 77, 474.  doi: 10.1134/S107036320703022X

    40. [40]

      Zamigailo, L. L.; Petrova, O. N.; Shirobokova, M. G.; Lipson, V. V. Russ. J. Org. Chem. 2013, 49, 288.  doi: 10.1134/S1070428013020188

    41. [41]

      Fronabarger, J. W.; Chapman, R. D.; Gilardi, R. D. Tetrahedron Lett. 2006, 47, 7707.  doi: 10.1016/j.tetlet.2006.08.106

    42. [42]

      Khankischpur, M.; Hansen, F. K.; Geffken, D. Synthesis 2010, 1645.
       

    43. [43]

      Dolzhenko, A. V.; Kalinina, S. A.; Kalinin, D. V. RSC Adv. 2013, 3, 15850.  doi: 10.1039/c3ra41932k

    44. [44]

      Tartakovsky, V. A.; Frumkin, A. E.; Churakov, A. M.; Strelenko, Y. A. Russ. Chem. Bull. 2005, 54, 719.  doi: 10.1007/s11172-005-0310-8

    45. [45]

      Bakharev, V. V.; Parfenov, V. E.; Ul'yankin, I. V.; Zavodskaya, A. V.; Selezneva, E. V.; Gidaspov, A. A.; Eltsov, O. S.; Slepukhin, P. A. Tetrahedron 2014, 70, 6825.  doi: 10.1016/j.tet.2014.07.058

    46. [46]

      Zavodskaya, A. V.; Bakharev, V. V.; Parfenov, V. E.; Gidaspov, A. A.; Slepukhin, P. A.; Isenov, M. L.; Eltsov, O. S. Tetrahedron Lett. 2015, 56, 1103.  doi: 10.1016/j.tetlet.2015.01.151

    47. [47]

      Bakharev, V. V.; Parfenov, V. E.; Ul'yankina, I. V.; Zavodskaya, A. V.; Gidaspov, A. A.; Slepukhin, P. A.; Chem. Heterocycl. Compd. 2015, 51, 1014.  doi: 10.1007/s10593-016-1812-z

    48. [48]

      Miyamoto, Y.; Yamazaki, C.; Matzui, M. J. Heterocycl. Chem. 1990, 27, 1553.  doi: 10.1002/jhet.v27:6

    49. [49]

      Miyamoto, Y. J. Heterocycl. Chem. 2000, 37, 1587.  doi: 10.1002/jhet.v37:6

    50. [50]

      Deshpande, R. J.; Roa, A. V. R. Synthesis 1974, 863.
       

    51. [51]

      Koppes, W. M.; Sitzmann, M. E. US 6423844, 2002.
       

    52. [52]

      Golovina, O. V.; Bakharev, V. V.; Golovin, E. V.; Parfenov, V. E.; Slepukhin, P. A. Tetrahedron Lett. 2013, 54, 3858.  doi: 10.1016/j.tetlet.2013.05.052

    53. [53]

      Dandia, A.; Arya, K.; Sati, M. Synth. Commun. 2004, 34, 1141.  doi: 10.1081/SCC-120028646

    54. [54]

      Karanik, M.; P tzel, M.; Liebscher, J. Synthesis 2003, 1201.

    55. [55]

      Klein, R. S.; De, L. H.; Federico, G.; Tam, S. Y. K.; Wempen, I.; Fox, J. J. J. Heterocycl. Chem. 1976, 13, 589.  doi: 10.1002/jhet.5570130333

    56. [56]

      Oakes, F. T.; Leonard, N. J. J. Org. Chem. 1985, 50, 4986.  doi: 10.1021/jo00224a074

    57. [57]

      Lalezari, I.; Nabahi, S. J. Heterocycl. Chem. 1980, 17, 1121.  doi: 10.1002/jhet.v17:5

    58. [58]

      Furukawa, M.; Kawanabe, K.; Yoshimi, A.; Okawara, T.; Noguchi, Y. Chem. Pharm. Bull. 1983, 31, 2473.  doi: 10.1248/cpb.31.2473

    59. [59]

      Badawey, E. A. M.; Kappe, T. Arch. Pharm. Pharm. Med. Chem. 1997, 330, 59.  doi: 10.1002/(ISSN)1521-4184

    60. [60]

      Dolzhenko, A. V.; Chui, W. K.; Dolzhenko, A. V. Synthesis 2006, 597.

    61. [61]

      Suvorova, E. Y.; Vikrishchuk, N. I.; Popov, L. D.; Starikova, Z. A.; Vikrishchuk, A. D.; Zhdanov, Y. A. Russ. J. Org. Chem. 2007, 43, 1553.  doi: 10.1134/S1070428007100259

    62. [62]

      Esmaeili, N.; Neshati, J.; Yavari, I. Res. Chem. Intermed. 2016, 42, 5339.  doi: 10.1007/s11164-015-2369-7

    63. [63]

      Kobe, J.; Stanovnik, B.; Tisler, M. Chem. Commun. (London) 1968, 1456.

    64. [64]

      Dao, P.; Smith, N.; Tomkiewicz, R. C.; Yen, P. E.; Camacho, A. M.; Lietha, D.; Herbeuval, J. P.; Coumoul, X.; Garbay, C.; Chen, H. X. J. Med. Chem. 2015, 58, 237.  doi: 10.1021/jm500784e

    65. [65]

      Nair, V.; Lyons, A. G.; Purdy, D. F. Tetrahedron 1991, 47, 8949.  doi: 10.1016/S0040-4020(01)86501-7

    66. [66]

      Dao, P.; Garbay, C.; Chen, H. X. Tetrahedron 2013, 69, 3867.  doi: 10.1016/j.tet.2013.03.039

    67. [67]

      Voegel, J. J.; Altorfer, M. M.; Benner, S. A. Helv. Chim. Acta 1993, 76, 2061.  doi: 10.1002/(ISSN)1522-2675

    68. [68]

      Rao, P.; Benner, S. A. J. Org. Chem. 2001, 66, 5012.  doi: 10.1021/jo005743h

    69. [69]

      Li, J. J.; Song, C.; Cui, D. Mei.; Zhang, C. Org. Biomol. Chem. 2017, 15, 5564.  doi: 10.1039/C7OB01018D

    70. [70]

      Holtwick, J. B.; Golankiewicz, B.; Holmes, B. N.; Leonard, N. J. J. Org. Chem. 1979, 44, 3858.  doi: 10.1021/jo01336a023

    71. [71]

      Hosmane, R. S.; Bakthavachalam, V.; Leonard, N. J. J. Am. Chem. Soc. 1982, 104, 235.  doi: 10.1021/ja00365a043

    72. [72]

      Balicki, R.; Hosmane, R. S.; Leonard, N. J. J. Org. Chem. 1983, 48, 3.  doi: 10.1021/jo00149a002

    73. [73]

      Wang, Z. J.; Huynh, H. K.; Han, B.; Krishnamurthy, R.; Eschenmoser, A. Org. Lett. 2003, 5, 2067.  doi: 10.1021/ol030044n

    74. [74]

      Han, B.; Jaun, B.; Krishnamurthy, R.; Eschenmoser, A. Org. Lett. 2004, 6, 3691.  doi: 10.1021/ol048649m

    75. [75]

      Wagner, T.; Han, B.; Koch, G.; Krishnamurthy, R.; Eschenmoser, A. Helv. Chim. Acta 2005, 88, 1960.  doi: 10.1002/(ISSN)1522-2675

    76. [76]

      Novinson, T.; Senga, K.; Kobe, J.; Robins, R. K.; O'Brien, D. E.; Albert, A. A. J. Heterocycl. Chem. 1974, 11, 691.  doi: 10.1002/jhet.v11:5

    77. [77]

      Brandt, T. A.; Caron, S.; Damon, D. B.; DiBrino, J.; Ghosh, A.; Griffith, D. A.; Kedia, S.; Ragan, J. A.; Rose, P. R.; Vanderplas, B. C.; Wei, L. L. Tetrahedron 2009, 65, 3292.  doi: 10.1016/j.tet.2008.10.067

    78. [78]

      Strohmeyer, T. W.; Sliskovic, D. R.; Lang, S. A.; Jr.; Lin, Y. J. Heterocycl. Chem. 1985, 22, 7.  doi: 10.1002/jhet.v22:1

    79. [79]

      Insuasty, H.; Estrada, M.; Corte's, E.; Quiroga, J.; Insuasty, B.; Abonı'a, R.; Nogueras, M.; Cobo, J. Tetrahedron Lett. 2006, 47, 5441.  doi: 10.1016/j.tetlet.2006.05.168

    80. [80]

      Lim, F. P. L.; Luna, G.; Dolzhenko, A. V. Tetrahedron Lett. 2014, 55, 5159.  doi: 10.1016/j.tetlet.2014.07.105

    81. [81]

      Norman, R. E.; Perkins, M. V.; Liepa, A. J.; Francis, C. L. Aust. J. Chem. 2016, 69, 61.
       

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    8. [8]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    9. [9]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    12. [12]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    13. [13]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Chen Hu Yu Wu Lianqing Chen Tao Huang Chunya Li Lin Li Bingguang Zhang Peng Mei . 基于“三位一体四融合”策略的化学实验室安全课程创新与探索. University Chemistry, 2025, 40(8): 25-32. doi: 10.12461/PKU.DXHX202410088

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(24)
  • Abstract views(3228)
  • HTML views(785)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return