Citation: Jiang Hua, Li Qiaolian, Wang Guangxia. Progress in Helicates Directed by Metal Coordination[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1065-1084. doi: 10.6023/cjoc201711013 shu

Progress in Helicates Directed by Metal Coordination

  • Corresponding author: Jiang Hua, jiangh@bnu.edu.cn
  • Received Date: 7 November 2017
    Revised Date: 23 November 2017
    Available Online: 15 May 2017

    Fund Project: the National Natural Science Foundation of China 21332008the National Natural Science Foundation of China 21472015Project supported by the National Natural Science Foundation of China (Nos. 21472015, 21332008)

Figures(41)

  • Artificial foldamers were constructed by non-covalent interactions to mimic the structures of biomacromolecules, such as proteins and DNA, which is conducive to a better understanding of the chemical processes at the molecular level in nature. The significant advances in foldamers render it become one of the most important topics in supramolecular chemistry. Coordination bond is widely used in the self-assembly process due to its bond strength and diverse geometry. In this article, we summarize a few types of metal-coordination helical folding systems, including single helicate, double helicates, triple helicates, quadruple helicates and cyclic helicates, and their folding behaviors and structural reconfiguration in the coordination process.
  • 加载中
    1. [1]

      Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.  doi: 10.1021/ja01002a035

    2. [2]

      Pedersen, C. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron Lett. 1969, 10, 2885.  doi: 10.1016/S0040-4039(01)88299-X

    4. [4]

      Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Helgesen, R. C.; Timko, J. M.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 3021.  doi: 10.1021/ja00790a052

    6. [6]

      Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Hecht, S.; Huc, I. Foldamers, Wiley-VCH, Weinheim, 2007, p. 3.
       

    8. [8]

      Saraogi, I.; Hamilton, A. D. Chem. Soc. Rev. 2009, 38, 1726.  doi: 10.1039/b819597h

    9. [9]

      Juwarker, H.; Jeong, K. S. Chem. Soc. Rev. 2010, 39, 3664.  doi: 10.1039/b926162c

    10. [10]

    11. [11]

      Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.  doi: 10.1039/B901710K

    12. [12]

      Hännia, K. D.; Leigh, D. A. Chem. Soc. Rev. 2010, 39, 1240.  doi: 10.1039/B901974J

    13. [13]

    14. [14]

      Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Angew. Chem., Int. Ed. 2011, 50, 9260.  doi: 10.1002/anie.v50.40

    15. [15]

      Ayme, J.; Beves, J. E.; Campbella, C. J.; Leigh, D. A. Chem. Soc. Rev. 2013, 42, 1700.  doi: 10.1039/C2CS35229J

    16. [16]

      Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780.  doi: 10.1021/cr068046j

    17. [17]

    18. [18]

      Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081.  doi: 10.1021/acs.chemrev.5b00146

    20. [20]

      Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 13071.  doi: 10.1021/ja963290l

    21. [21]

      Hill, J. D.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893.  doi: 10.1021/cr990120t

    22. [22]

      Stephens, O. M.; Kim, S.; Welch, B. D.; Hodsdon, M. E.; Kay, M. S.; Schepartz, A. J. Am. Chem. Soc. 2005, 127, 13126.  doi: 10.1021/ja053444+

    23. [23]

      Heemstra, J. M.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 1648.  doi: 10.1021/ja031842b

    24. [24]

      Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2565.  doi: 10.1073/pnas.84.9.2565

    25. [25]

      Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005.  doi: 10.1021/cr960053s

    26. [26]

      Albrecht, M. Chem. Rev. 2001, 101, 3457.  doi: 10.1021/cr0103672

    27. [27]

      Hannon, M. J.; Childs, L. J. Supramol. Chem. 2004, 16, 7.  doi: 10.1080/10610270310001632386

    28. [28]

      Boiocchia, M.; Fabbrizzi, L. Chem. Soc. Rev. 2014, 43, 1835.  doi: 10.1039/C3CS60428D

    29. [29]

      Horeau, M.; Lautrette, G.; Wicher, B.; Blot, V.; Lebreton, J.; Pipelier, M.; Dubreuil, D.; Ferrand, Y.; Huc, I. Angew Chem., Int. Ed. 2017, 56, 6823.  doi: 10.1002/anie.201701693

    30. [30]

      Prince, R. B.; Okada, T.; Moore, J. S. Angew. Chem., Int. Ed. 1999, 38, 233.  doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Kim, H. J.; Lee, E.; Park, H.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994.  doi: 10.1021/ja073554b

    32. [32]

      Stadler, A. M.; Kyritsakas, N.; Lehn, J. M. Chem. Commun. 2004, 2024.

    33. [33]

      Kwong, H. L.; Yeung, H. L.; Lee, W. S.; Wong, W. T. Chem. Commun. 2006, 4841.
       

    34. [34]

      Eerdun, C.; Hisanaga, S.; Setsune, J. Angew. Chem., Int. Ed. 2013, 52, 929.  doi: 10.1002/anie.201207113

    35. [35]

      Zhang, F.; Bai, S.; Yap, G. P. A.; Tarwade, V.; Fox, J. M. J. Am. Chem. Soc. 2005, 127, 10590.  doi: 10.1021/ja050886c

    36. [36]

      Lehn, J. M.; Rigault, A. Angew. Chem., Int. Ed, 1988, 27, 1095.  doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Hasenknopf, B.; Lehn, J. M.; Baum, G.; Fenske, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 1397.  doi: 10.1073/pnas.93.4.1397

    38. [38]

      Smith, V. C. M.; Lehn, J. M. Chem. Commun. 1996, 2733.

    39. [39]

      Orita, A.; Nakano, T.; An, D. L.; Tanikawa, K.; Wakamatsu, K.; Otera, J. J. Am. Chem. Soc. 2004, 126, 10389.  doi: 10.1021/ja048327d

    40. [40]

      Zong, R.; Thummel, R. P. Inorg. Chem. 2005, 44, 5984.  doi: 10.1021/ic050712w

    41. [41]

      Nitschke, J. R.; Schultz, D.; Bernardinelli, G.; Gérard, D. J. Am. Chem. Soc. 2004, 126, 16538.  doi: 10.1021/ja046001z

    42. [42]

      Schultz, D.; Nitschke, J. R. J. Am. Chem. Soc. 2006, 128, 9887.  doi: 10.1021/ja061841u

    43. [43]

      Hutin, M.; Cramer, C. J.; Gagliardi, L.; Shahi, A. R. M.; Bernardinelli, G.; Cerny, R.; Nitschke, J. R. J. Am. Chem. Soc. 2007, 129, 8774.  doi: 10.1021/ja070320j

    44. [44]

      Campbell, V. E.; Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.; Nitschke, J. R. Nat. Chem. 2010, 2, 684.  doi: 10.1038/nchem.693

    45. [45]

      Hatten, X.; Asil, D.; Friend, R. H.; Nitschke, J. R. J. Am. Chem. Soc. 2012, 134, 19170.  doi: 10.1021/ja308055s

    46. [46]

      Kaminker, R.; Hatten, X.; Lahav, M.; Lupo, F.; Gulino, A.; Evmenenko, G.; Dutta, P.; Browne, C.; Nitschke, J. R.; Boom, M. E. J. Am. Chem. Soc. 2013, 135, 17052.  doi: 10.1021/ja4077205

    47. [47]

      Greenfield, J. L.; Rizzuto, F. J.; Goldberga, I.; Nitschke, J. R. Angew. Chem., Int. Ed. 2017, 56, 7541.  doi: 10.1002/anie.201702320

    48. [48]

      Lützen, A.; Hapke, M.; Griep-Raming, J.; Haase, D.; Saak, W. Angew. Chem. Int. Ed. 2002, 41, 2086.  doi: 10.1002/1521-3773(20020617)41:12<2086::AID-ANIE2086>3.0.CO;2-0

    49. [49]

      Bunzen, J.; Bruhn, T.; Bringmann, G.; Lützen, A. J. Am. Chem. Soc. 2009, 131, 3621.  doi: 10.1021/ja807780j

    50. [50]

      Bunzen, J.; Hovorka, R.; Lützen, A. J. Org. Chem. 2009, 74, 5228.  doi: 10.1021/jo900254r

    51. [51]

      Riis-Johannessen, T.; Harding, L. P.; Jeffery, J. C.; Moon, R.; Rice, C. R. Dalton Trans. 2007, 16, 1577.

    52. [52]

      Zhao, D. P.; Leeuwen, T.; Cheng, J. L.; Feringa, B. L. Nat. Chem. 2017, 9, 250.  doi: 10.1038/nchem.2668

    53. [53]

      Wood, T. E.; Dalgleish, N. D.; Power, E. D.; Thompson, A.; Chen, X. M.; Okamoto, Y. J. Am. Chem. Soc. 2005, 127, 5740.  doi: 10.1021/ja0500613

    54. [54]

      Katagiri, H.; Miyagawa, T.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2006, 45, 1741.  doi: 10.1002/(ISSN)1521-3773

    55. [55]

      Miwa, K.; Furusho, Y.; Yashima, E. Nat. Chem. 2010, 2, 444.  doi: 10.1038/nchem.649

    56. [56]

      Miwa, K.; Shimizu, K.; Min, H.; Furusho, Y.; Yashima, E. Tetrahedron 2012, 68, 4470.  doi: 10.1016/j.tet.2011.11.079

    57. [57]

      Furusho, Y.; Miwa, K.; Asai, R.; Yashima, E. Chem. Eur. J. 2011, 17, 13954.  doi: 10.1002/chem.v17.50

    58. [58]

      Suzuki, Y.; Nakamura, T.; Iida, H.; Ousaka, N.; Yashima, E. J. Am. Chem. Soc. 2016, 138, 4852.  doi: 10.1021/jacs.6b00787

    59. [59]

      Yamamoto, S.; Iida, H.; Yashima, E. Angew. Chem., Int. Ed. 2013, 52, 6849.  doi: 10.1002/anie.201302560

    60. [60]

      Dömer, J.; Slootweg, J. C.; Hupka, F.; Lammertsma, K.; Hahn, F. E. Angew. Chem., Int. Ed. 2010, 49, 6430.  doi: 10.1002/anie.201002776

    61. [61]

      Cui, F.; Li, S.; Jia, C.; Mathieson, J. S.; Cronin, L.; Yang, X.; Wu, B. Inorg. Chem. 2012, 51, 179.  doi: 10.1021/ic201417y

    62. [62]

      Li, Q. L.; Huang, F.; Fan, Y. X.; Wang, Y. L.; Li, J. F.; He, Y. J.; Jiang, H. Eur. J. Inorg. Chem. 2014, 3235.
       

    63. [63]

      Hannon, M. J.; Moreno, V.; Prieto, M. J.; Moldrheim, E.; Sletten, E.; Meistermann, I.; Isaac, C. J.; Sanders, K. J.; Rodger, A. Angew. Chem., Int. Ed. 2001, 40, 879.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      Meistermann, I.; Moreno, V.; Prieto, M. J.; Moldrheim, E.; Sletten, E.; Khalid, S.; Rodger, P. M.; Peberdy, J. C.; Isaac, C. J.; Rodger, A.; Hannon, M. J. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5069.  doi: 10.1073/pnas.062634499

    65. [65]

      Oleksi, A.; Blanco, A. G.; Boer, R.; Usón, I.; Aymamí, J.; Rodger, A.; Hannon, M. J.; Coll, M. Angew. Chem., Int. Ed. 2006, 45, 1227.  doi: 10.1002/(ISSN)1521-3773

    66. [66]

      Malina, J.; Hannon, M. J.; Brabec, V. Chem. Eur. J. 2015, 21, 11189.  doi: 10.1002/chem.v21.31

    67. [67]

      Pascu, G. I.; Hotze, A. C. G.; Sanchez-Cano, C.; Kariuki, B. M.; Hannon, M. J. Angew. Chem., Int. Ed. 2007, 46, 4374.  doi: 10.1002/(ISSN)1521-3773

    68. [68]

      Phongtongpasuk, S.; Paulus, S.; Schnabl, J.; Sigel, R. K. O.; Spingler, B.; Hannon, M. J.; Freisinger, E. Angew. Chem., Int. Ed. 2013, 52, 11513.  doi: 10.1002/anie.201305079

    69. [69]

      Kundu, N.; Maity, M.; Chatterjee, P. B.; Teat, S. J.; Endo, A.; Chaudhury, M. J. Am. Chem. Soc. 2011, 133, 20104.  doi: 10.1021/ja2088986

    70. [70]

      Zhang, Z.; Dolphin, D. Chem. Commun. 2009, 6931.
       

    71. [71]

      Zhang, Z.; Dolphin, D. Inorg. Chem. 2010, 49, 11550.  doi: 10.1021/ic101694z

    72. [72]

      Bocquet, B.; Bernardinelli, G.; Ouali, N.; Floquet, S.; Renaud, F.; Hopfgartnerc, G.; Piguet, C. Chem. Commun. 2002, 930.

    73. [73]

      Zeckert, K.; Hamacek, J.; Rivera, J.; Floquet, S.; Pinto, A.; Borkovec, M.; Piguet, C. J. Am. Chem. Soc. 2004, 126, 11589.  doi: 10.1021/ja0483443

    74. [74]

      Zeckert, K.; Hamacek, J.; Senegas, J.; Dalla-Favera, N.; Floquet, S.; Bernardinelli, G.; Piguet, C. Angew. Chem., Int. Ed. 2005, 44, 7954.  doi: 10.1002/(ISSN)1521-3773

    75. [75]

      Riis-Johannessen, T.; Bernardinelli, G.; Filinchuk, Y.; Clifford, S.; Favera, N. D.; Piguet, C. Inorg. Chem. 2009, 48, 5512.  doi: 10.1021/ic900654m

    76. [76]

      Terazzi, E.; Guénée, L.; Varin, J.; Bocquet, B.; Lemonnier, J. F.; Emery, D.; Mareda, J.; Piguet, C. Chem. Eur. J. 2011, 17, 184.  doi: 10.1002/chem.201002771

    77. [77]

      Zare, D.; Suffren, Y.; Guénée, L.; Eliseeva, S. V.; Nozary, H.; Aboshyan-Sorgho, L.; Petoud, S.; Hauser, A.; Piguet, C. Dalton Trans. 2015, 44, 2529.  doi: 10.1039/C4DT02336F

    78. [78]

      Zhu, X.; He, C.; Dong, D.; Liu, Y.; Duan, C. Y. Dalton Trans. 2010, 39, 10051.  doi: 10.1039/c002278k

    79. [79]

      Hahn, F. E.; Isfort, C. S.; Pape, T. Angew. Chem., Int. Ed. 2004, 43, 4807.

    80. [80]

      Kreickmann, T.; Diedrich, C.; Pape, T.; Huynh, H. V.; Grimme, S.; Hahn, F. E. J. Am. Chem. Soc. 2006, 128, 11808.  doi: 10.1021/ja063655u

    81. [81]

      McMorran, D. A.; Steel, P. J. Angew. Chem., Int. Ed. 1998, 37, 3295.  doi: 10.1002/(ISSN)1521-3773

    82. [82]

      Tripathy, D.; Pal, A. K.; Hanan, G. S.; Chand, D. K. Dalton Trans. 2012, 41, 11273.  doi: 10.1039/c2dt30937h

    83. [83]

      Scott, S. .; Gavey, E. L.; Lind, S. J.; Gordona, K. C.; Crowley, J. D. Dalton Trans. 2011, 40, 12117.  doi: 10.1039/c1dt10551e

    84. [84]

      McNeill, S. M.; Preston, D.; Lewis, J. E. M.; Robert, A.; Knerr-Rupp, K.; Graham, D. O.; Wright, J. R.; Giles, G. I.; Crowley, J. D. Dalton Trans. 2015, 44, 11129.  doi: 10.1039/C5DT01259G

    85. [85]

      Xu, J. D.; Raymond, K. N. Angew. Chem., Int. Ed. 2006, 45, 6480.  doi: 10.1002/(ISSN)1521-3773

    86. [86]

      Hasenknopf, B.; Lehn, J. M.; Kneisel, B. O.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. 1996, 35, 1838.  doi: 10.1002/(ISSN)1521-3773

    87. [87]

      Hasenknopf, B.; Lehn, J. M.; Boumediene, N.; Dupont-Gervais, A.; Dorsselaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.  doi: 10.1021/ja971204r

    88. [88]

      Leigh, D. A.; Pritchard, R. G.; Stephens, A. J. Nat. Chem. 2014, 6, 978.  doi: 10.1038/nchem.2056

    89. [89]

      Marcos, V.; Stephens, A. J.; Jaramillo-Garcia, J.; Nussbaumer, A. L.; Woltering, S. L.; Valero, A.; Lemonnier, J. F.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Science 2016, 352, 1555.  doi: 10.1126/science.aaf3673

    90. [90]

      Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J. F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Science 2017, 355, 159.  doi: 10.1126/science.aal1619

    91. [91]

      Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2011, 4, 15.

    92. [92]

      Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. J. Am. Chem. Soc. 2012, 134, 9488.  doi: 10.1021/ja303355v

    93. [93]

      Beves, J. E.; Campbell, C. J.; Leigh, D. A.; Pritchard, R. G. Angew. Chem., Int. Ed. 2013, 52, 6464.  doi: 10.1002/anie.201302634

    94. [94]

      Ayme, J. F.; Beves, J. E.; Campbell, C. J.; Leigh, D. A. Angew. Chem., Int. Ed. 2014, 53, 7823.  doi: 10.1002/anie.201404270

    95. [95]

      Ayme, J. F.; Beves, J. E.; Campbell, C. J.; Gil-Ramírez, G.; Leigh, D. A.; Stephens, A. J. J. Am. Chem. Soc. 2015, 137, 9812.  doi: 10.1021/jacs.5b06340

    96. [96]

      Allen, K. E.; Faulkner, R. A.; Harding, L. P.; Rice, C. R.; Johannessen, T.; Voss, M. L.; Whitehead, M. Angew. Chem., Int. Ed. 2010, 49, 6655.  doi: 10.1002/anie.201003342

    97. [97]

      Metherell, A. J.; Ward, M. D. RSC Adv. 2013, 3, 14281.  doi: 10.1039/c3ra42598c

    98. [98]

      Wu, Z. S.; Hsu, J. T.; Hsieh, C. C.; Horng, Y. C. Chem. Commun. 2012, 3436.
       

    99. [99]

      Constable, E. C.; Hostettler, N.; Housecroft, C. E.; Murray, N. S.; Schönle, J.; Soydaner, U.; Walliser, R. M.; Zampese, J. A. Dalton Trans. 2013, 42, 4970.  doi: 10.1039/c3dt32560a

    100. [100]

      Jiménez, A.; Bilbeisi, R. A.; Ronson, T. K.; Zarra, S.; Woodhead, C.; Nitschke, J. R. Angew. Chem., Int. Ed. 2014, 53, 4556.  doi: 10.1002/anie.201400541

    101. [101]

      Wood, C. S.; Ronson, T. K.; Belenguer, A. M.; Holstein, J. J.; Nitschke, J. R. Nat. Chem. 2015, 7, 354.  doi: 10.1038/nchem.2205

    102. [102]

      Søensen, A.; Castilla, A. M.; Ronson, T. K.; Pittelkow, M.; Nitschke, J. R. Angew. Chem., Int. Ed. 2013, 52, 11273.  doi: 10.1002/anie.v52.43

    103. [103]

      Meng, W. J.; Ronson, T. K.; Clegg, J. K.; Nitschke, J. R. Angew. Chem., Int. Ed. 2013, 52, 1017.  doi: 10.1002/anie.201206990

    104. [104]

      Scherer, M.; Caulder, D. L.; Johnson, D. W.; Raymond, K. N. Angew. Chem., Int. Ed. 1999, 38, 1588.

    105. [105]

      Wang, B.; Zang, Z. P.; Wang, H. H.; Dou, W.; Tang, X. L.; Liu, W. S.; Shao, Y. L.; Ma, J. X.; Li, Y. Z.; Zhou, J. Angew. Chem., Int. Ed. 2013, 52, 3756.  doi: 10.1002/anie.201210172

    106. [106]

      Malviya, A.; Jena, H. S.; Mondal, A. K.; Konar S. Eur. J. Inorg. Chem. 2015, 2901.

    107. [107]

      Diebold, C.; Mobian, P.; Huguenard, C.; Allouche, L.; Henry, M. Inorg. Chem. 2010, 49, 6369.  doi: 10.1021/ic100475c

    108. [108]

      Weekes, D. M.; Diebold, C.; Mobian, P.; Huguenard, C.; Allouche, L.; Henry, M. Chem. Eur. J. 2014, 20, 5092.  doi: 10.1002/chem.201304317

    109. [109]

      Stadler, A. M.; Burg, C.; Ramírez, J.; Lehn, J. M. Chem. Commun. 2013, 5733.

    110. [110]

      Miao, C. R.; Khalil, G.; Chaumont, A.; Mobian, P.; Henry, M. Dalton Trans. 2016, 45, 7998.  doi: 10.1039/C6DT00471G

    111. [111]

      Stadler, A. M.; Ramírez, J.; Lehn, J. M.; Vincent, B. Chem. Sci. 2016, 7, 3689.  doi: 10.1039/C5SC04403K

  • 加载中
    1. [1]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    4. [4]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    10. [10]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    11. [11]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    14. [14]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    15. [15]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(43)
  • Abstract views(4540)
  • HTML views(1614)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return