Citation: Lin Wei, Hu Xiuxiu, Wang Yazhen, Song Shuai, Zhang Mengye, Shi Daqing. Microwave-Assisted Synthesis of 3-Substituted Indole Derivatives via Three-Component Domino Reaction[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 855-862. doi: 10.6023/cjoc201709033 shu

Microwave-Assisted Synthesis of 3-Substituted Indole Derivatives via Three-Component Domino Reaction

  • Corresponding author: Lin Wei, linwei@jsut.edu.cn Shi Daqing, dqshi@suda.edu.cn
  • Received Date: 21 September 2017
    Revised Date: 9 November 2017
    Available Online: 1 April 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21502074), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 15KJA150006) and the College Students Practice Innovation Training Plan of Jiangsu Province (No. 201711463010Z)Project supported by the National Natural Science Foundation of China 21502074the College Students Practice Innovation Training Plan of Jiangsu Province 201711463010Zthe Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions 15KJA150006

Figures(1)

  • The research of indoles has been one of the most active areas of heterocyclic chemistry. In particular, 3-substituted indole derivatives have received much attention as building blocks for the synthesis of many natural products and other biologically active compounds. In this article, an synthetic procedure for multi-substituted indole derivatives was successfully developed by a three-component reaction of phenylglyoxal monohydrate, aromatic amine and 4-hydroxycoumarin with a catalytic amount of trifluoroacetic acid under microwave irradiation conditions. This method has the advantages of simple operation, readily available raw materials, and high atom utilization.
  • 加载中
    1. [1]

      (a) Houlihan, W. J. ; Remers, W. A. ; Brown, R. K. Indoles: Part I, Wiley, New York, 1992.
      (b) Sundberg, R. J. The Chemistry of Indoles, Academic, New York, 1996.

    2. [2]

      Chen, I.; Safe, S.; Bjeldanes, L. Biochem. Pharm. 1996, 51, 1069.  doi: 10.1016/0006-2952(96)00060-3

    3. [3]

      Suzen, S.; Buyukbingol, E. Farmaco 2000, 55, 246.  doi: 10.1016/S0014-827X(00)00028-8

    4. [4]

      (a) Suzen, S. ; Buyukbingol, E. Farmaco 1998, 53, 52.
      (b) Buyukbingol, E. ; Suzen, S. ; Klopman, G. Farmaco 1994, 49, 443.

    5. [5]

      Walter, G.; Liebl, R.; von Angerer, E. J. Steroid Biochem. Mol. Biol. 2004, 88, 409.  doi: 10.1016/j.jsbmb.2003.12.012

    6. [6]

      (a) Giagoudakis, G. ; Markantonis, S. L. Pharmacotherapy 2005, 25, 18.
      (b) Ge, X. ; Yannai, S. ; Rennert, G. ; Gruener, N. ; Fares, F. A. Biochem. Biophys. Res. Commun. 1996, 228, 153.

    7. [7]

      Zhu, S.; Xu, L. B.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 927(in Chinese).
       

    8. [8]

      Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278.  doi: 10.1039/b212257j

    9. [9]

    10. [10]

      (a) Fischer, E. ; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241.
      (b) Fischer, E. ; Hess, O. Ber. Dtsch. Chem. Ges. 1884, 17, 559.
      (c) Müller, S. ; Webber, M. J. ; List, B. J. Am. Chem. Soc. 2011, 133, 18534.
      (d) Zhao, D. ; Shi, Z. ; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426.

    11. [11]

      (a) Würtz, S. ; Rakshit, S. ; Neumann, J. J. ; Drö ge, T. ; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.
      (b) Bernini, R. ; Fabrizi, G. ; Sferrazza, A. ; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078.
      (c) Wei, Y. ; Deb, I. ; Yoshikai, N. J. Am. Chem. Soc.

    12. [12]

      (a) Stuart, D. R. ; Bertrand-Laperle, M. ; Burgess, K. M. ; Fagnou, K. J. Am. Chem. lSoc. 2008, 130, 16474.
      (b) Shi, Z. ; Zhang, C. ; Li, S. ; Pan, D. ; Ding, S. ; Cui, Y. ; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.
      (c) Stuart, D. R. ; Alsabeh, P. ; Kuhn, M. ; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326.
      (d) Huestis, M. P. ; Chan, L. ; Stuart, D. R. ; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338.
      (e) Wang, H. ; Grohmann, C. ; Nimphius, C. ; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592.
      (f) Liu, B. ; Song, C. ; Sun, C. ; Zhou, S. ; Zhu, J. J. Am. Chem. Soc. 2013, 135, 16625.

    13. [13]

      (a) Hamide, H. P. ; Kurosh, R. M. ; Leila, Y. M. Tetrahedron Lett. 2014, 70, 1780.
      (b) Liang, Y. R. ; Chen, X. Y. ; Wu, Q. W. ; Lin, X. F. Tetrahedron Lett. 2015, 71, 616.
      (c) Han, Y. ; Sheng, Y. J. ; Yan, C. G. Org. Lett. 2014, 16, 2654.
      (d) Guo, R. Y. ; An, Z. M. ; Mo, L. P. ; Wang, R. Z. ; Liu, H. X. ; Wang, S. X. ; Zhang, Z. H. ACS Comb. Sci. 2013, 15, 557.
      (e) Rahmati, A. ; Kenarkoohi, T. ; Khavasi, H. R. ACS Comb. Sci. 2012, 14, 657.
      (f) Liu, X. ; Xu, X. ; Wang, X. ; Yang, W. ; Qian, Q. ; Zhang, M. ; Song, L. ; Deng, H. ; Shao, M. Tetrahedron Lett. 2013, 54, 4451.
      (g) Liu, Y. Y. ; Zhang, Y. ; Hu, C. F. ; Wan, J. P. ; Wen, C. P. RSC Adv. 2014, 4, 35528.
      (h) Brahmachari, G. ; Das S. RSC Adv. 2014, 4, 7380.
      (i) Khan, F. A. K. ; Zaheer, Z. ; Sangshetti, J. N. ; Patil, R. H. ; Farooqui, M. Bioorg. Med. Chem. Lett. 2017, 27, 567.
      (j) Balwe, S. G. ; Lim, K. T. ; Cho, B. G. ; Jeong, Y. T. Tetrahedron2017, 73, 3564.
      (k) Kumar, S. A. ; Kumar, S. ; Ahmed, N. RSC Adv. 2016, 6, 108105.
      (l) Wei, J. ; Liu, L. ; Tang, D. N. ; Wu, C. P. Zhao, X. J. ; Hao, W. J. ; Jiang, B. J. Heterocycl. Chem. 2017, 54, 3403.

    14. [14]

      (a) Fukuyama, H. ; Chen, X. ; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127.
      (b) Saito, A. ; Kanno, A. ; Hanzawa, Y. Angew. Chem., Int. Ed. 2007, 46, 3931.
      (c) Tan, Y. ; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
      (d) Sun, K. ; Liu, S. ; Bec, P. M. ; Driver, T. G. Angew. Chem., Int. Ed. 2011, 50, 1702.
      (e) Yao, B. ; Wang, Q. ; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 12311.
      (f) Breazzano, S. P. ; Poudel, Y. B. ; Boger, D. L. J. Am. Chem. Soc. 2013, 135, 1600.
      (g) Shan, D. ; Gao, Y. ; Jia, Y. Angew. Chem., Int. Ed. 2013, 52, 4902. (h) Sagadevan, A. ; Ragupathi, A. ; Hwang, K. C. Angew. Chem., Int. Ed. 2015, 54, 13896.
      (i) Tong, S. ; Xu, Z. ; Mamboury, M. ; Wang, Q. Angew. Chem., Int. Ed. 2015, 54, 11809.
      (j) Yan, H. ; Wang, H. ; Li, X. ; Xin, X. ; Wang, C. ; Wan, B. Angew. Chem., Int. Ed. 2015, 54, 10613.

  • 加载中
    1. [1]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    9. [9]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    12. [12]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(15)
  • Abstract views(1196)
  • HTML views(385)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return