Citation: Miao Siwen, Na Yong. Oxygenation of Organic Substrates Based on Light-Driven Water Oxidation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 575-584. doi: 10.6023/cjoc201709006 shu

Oxygenation of Organic Substrates Based on Light-Driven Water Oxidation

  • Corresponding author: Na Yong, yongna@hit.edu.cn
  • Received Date: 5 September 2017
    Revised Date: 12 October 2017
    Available Online: 3 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21603046)the National Natural Science Foundation of China 21603046

Figures(14)

  • Hydrogen production by artificial photosynthetic water splitting is an efficient approach to convert solar ennergy into chemical bonds. Oxygenation of an organic substrate based on light-driven water oxidation is innovative way to mimic the oxygen evolving center (OEC) in Photosystem Ⅱ. The metal catalyst will accomplish H2O activation to generate high valent metal-oxo intermediate, which can transfer the oxygen atom to an organic substrate, during which the H atoms in H2O molecule could be released. This review is a perspective of the recent advances in oxygenation of organic substrates with water as oxygen source. In the meanwhile, research prospect on photocatalytic hydrogen production coupled with the photocatalytic oxygenation of an organic substrate for a new water splitting system has been proposed.
  • 加载中
    1. [1]

      Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.  doi: 10.1073/pnas.0603395103

    2. [2]

      Barber, J. Chem. Soc. Rev. 2009, 38, 185.  doi: 10.1039/B802262N

    3. [3]

      Duan, L. L.; Wang, L.; Li, F. S.; Li, F.; Sun, L. Acc. Chem. Res. 2015, 48, 2084.  doi: 10.1021/acs.accounts.5b00149

    4. [4]

      Shen, J. R. Annu. Rev. Plant Biol. 2015, 66, 23.  doi: 10.1146/annurev-arplant-050312-120129

    5. [5]

      Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W. Science 2014, 345, 804.  doi: 10.1126/science.1254910

    6. [6]

      Groves, J. T. Nat. Chem. 2014, 6, 89.  doi: 10.1038/nchem.1855

    7. [7]

      Oloo, W. N.; Que Jr., L. Acc. Chem. Res. 2015, 48, 2612.  doi: 10.1021/acs.accounts.5b00053

    8. [8]

      Nam, W.; Lee, Y. M.; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146.  doi: 10.1021/ar400258p

    9. [9]

      Fukuzumi, S.; Ohkubo, K.; Lee, Y. M.; Nam, W. Chem.-Eur. J. 2015, 21, 17548.  doi: 10.1002/chem.201502693

    10. [10]

      Moyer, B. A.; Meyer, T. J. J. Am. Chem. Soc. 1978, 100, 3601.  doi: 10.1021/ja00479a054

    11. [11]

      Wasylenko, D. J.; Ganesamoorthy, C.; Henderson, M. A.; Berlinguette, C. P. Inorg. Chem. 2011, 50, 3662.  doi: 10.1021/ic2000188

    12. [12]

      Duan, L.; Tong, L.; Xu, Y.; Sun, L. Energy Environ. Sci. 2011, 4, 3296.  doi: 10.1039/c1ee01276b

    13. [13]

      Funyu, S.; Isobe, T.; Takagi, S.; Tryk, D. A.; Inoue, H. J. Am. Chem. Soc. 2003, 125, 5734.  doi: 10.1021/ja0295218

    14. [14]

      Funyu, S.; Kinai, M.; Masui, D.; Takagi, S.; Shimada, T.; Tachibanaa, H.; Inoue, H. Photochem. Photobiol. Sci. 2010, 9, 931.  doi: 10.1039/c0pp00052c

    15. [15]

      Kurimoto, K.; Yamazaki, T.; Suzuri, Y.; Nabetani, Y.; Onuki, S.; Takagi, S.; Shimada, T.; Tachibana, H.; Inoue, H. Photochem. Photobiol. Sci. 2014, 13, 154.  doi: 10.1039/C3PP50271F

    16. [16]

      Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y. M.; Nam, W. Nat. Chem. 2011, 3, 38.  doi: 10.1038/nchem.905

    17. [17]

      Fukuzumi, S.; Mizuno, T.; Ojiri, T. Chem.-Eur. J. 2012, 18, 15794.  doi: 10.1002/chem.201202041

    18. [18]

      Treadway, J. A.; Moss, J. A.; Meyer, T. J. Inorg. Chem. 1999, 38, 4386.  doi: 10.1021/ic990466m

    19. [19]

      Hirai, Y.; Kojima, T.; Mizutani, Y.; Shiota, Y.; Yoshizawa, K.; Fukuzumi, S. Angew. Chem., Int. Ed. 2008, 47, 5772.  doi: 10.1002/anie.v47:31

    20. [20]

      Ohzu, S.; Ishizuka, T.; Hirai, Y.; Jiang, H.; Sakaguchi, M.; Ogura, T.; Fukuzumi, S.; Kojima, T. Chem. Sci. 2012, 3, 3421.  doi: 10.1039/c2sc21195e

    21. [21]

      Kalita, D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. ChemCatChem 2011, 3, 571.  doi: 10.1002/cctc.v3.3

    22. [22]

      Ohzu, S.; Ishizuka, T.; Hirai, Y.; Fukuzumi, S.; Kojima, T. Chem.-Eur. J. 2013, 19, 1563.  doi: 10.1002/chem.201203430

    23. [23]

      Singh, W. M.; Pegram, D.; Duan, H. F.; Kalita, D.; Simone, P.; Emmert, G. L.; Zhao, X. Angew. Chem., Int. Ed. 2012, 51, 1653.  doi: 10.1002/anie.v51.7

    24. [24]

      Giovanni, C. D.; Poater, A.; Benet-Buchholz, J.; Cavallo, L.; Solà, M.; Llobet, A. Chem.-Eur. J. 2014, 20, 3898.  doi: 10.1002/chem.201304699

    25. [25]

      Farràs, P.; Giovanni, C. D.; Clifford, J. N.; Garrido-Barros, P.; Palomares, E.; Llobet, A. Green Chem. 2016, 18, 255.  doi: 10.1039/C5GC01589H

    26. [26]

      Li, F.; Yu, M.; Jiang, Y.; Huang, F.; Li, Y. Q.; Zhang, B.; Sun, L. Chem. Commun. 2011, 47, 8949.  doi: 10.1039/c1cc12558c

    27. [27]

      Zhou, X.; Li, F.; Li, X.; Li, H.; Wang, Y.; Sun, L. Dalton Trans. 2015, 44, 475.  doi: 10.1039/C4DT02945C

    28. [28]

      Bai, L.; Li, F.; Wang, Y.; Li, H.; Jiang, X.; Sun, L. Chem. Commun. 2016, 52, 9711.  doi: 10.1039/C6CC04327E

    29. [29]

      Hamelin, O.; Guillo, P.; Loiseau, F.; Boissonnet, M.; Ménage, S. Inorg. Chem. 2011, 50, 7952.  doi: 10.1021/ic201431z

    30. [30]

      Guillo, P.; Hamelin, O.; Batat, P.; Jonusauskas, G.; McClenaghan, N. D.; Ménage, S. Inorg. Chem. 2012, 51, 2222.  doi: 10.1021/ic2022159

    31. [31]

      Li, T. T.; Li, F. M.; Zhao, W. L.; Tian, Y. H.; Chen, Y.; Cai, R.; Fu, W. F. Inorg. Chem. 2015, 54, 183.  doi: 10.1021/ic5020972

    32. [32]

      Phungsripheng, S.; Kozawa, K.; Akita, M.; Inagaki, A. Inorg. Chem. 2016, 55, 3750.  doi: 10.1021/acs.inorgchem.5b02518

    33. [33]

      Lee, Y. M.; Dhuri, S. N.; Sawant, S. C.; Cho, J.; Kubo, M.; Ogura, T.; Fukuzumi, S.; Nam, W. Angew. Chem., Int. Ed. 2009, 48, 1803.  doi: 10.1002/anie.v48:10

    34. [34]

      Kotani, H.; Suenobu, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 3249.  doi: 10.1021/ja109794p

    35. [35]

      Company, A; Sabenya, G.; González-Béjar, M; Gómez, L; Clémancey, M; Blondin, G; Jasniewski, A. J.; Puri, M; Browne, W. R; Latour, J.; Que Jr., L.; Costas, M.; Pérez-Prieto, J.; Lloret-Fillol, J. J. Am. Chem. Soc. 2014, 136, 4624.  doi: 10.1021/ja412059c

    36. [36]

      Chantarojsiri, T.; Sun, Y.; Long, J. R.; Chang, C. J. Inorg. Chem. 2015, 54, 5879.  doi: 10.1021/acs.inorgchem.5b00658

    37. [37]

      Herrero, C.; Quaranta, A.; Sircoglou, M.; Sénéchal-David, K.; Baron, A.; Marín, I. M.; Buron, C.; Baltaze, J.; Leibl, W.; Aukauloo, A.; Banse, F. Chem. Sci. 2015, 6, 2323.  doi: 10.1039/C5SC00024F

    38. [38]

      Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.; Kim, S. H.; Seo, M. S.; Lee, Y. M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Angew. Chem., Int. Ed. 2010, 49, 8190.  doi: 10.1002/anie.v49:44

    39. [39]

      Wu, X.; Yang, X.; Lee, Y. M.; Nam, W.; Sun, L. Chem. Commun. 2015, 51, 4013.  doi: 10.1039/C4CC10411K

    40. [40]

      Shen, D.; Saracini, C.; Lee, Y. M.; Sun, W.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2016, 138, 15857.  doi: 10.1021/jacs.6b10836

  • 加载中
    1. [1]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    18. [18]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(14)
  • Abstract views(1123)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return