Citation: Liu Qinglong, Fang Pengjin, Zhao Zhilong, Zhang Huizhen, Zhou Chenghe. Design, Synthesis, and Biological Evaluation of Novel Sulfonamide 1, 2, 4-Triazoles and Their Interaction with Calf Thymus DNA[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3146-3154. doi: 10.6023/cjoc201708010 shu

Design, Synthesis, and Biological Evaluation of Novel Sulfonamide 1, 2, 4-Triazoles and Their Interaction with Calf Thymus DNA

  • Corresponding author: Zhang Huizhen, zhanghuizhen@lyu.edu.cn
  • Received Date: 6 August 2017
    Revised Date: 2 September 2017
    Available Online: 19 December 2017

    Fund Project: the National Natural Science Foundation of China 21672173the Shandong Provincial Natural Science Foundation ZR2016CP22the Doctoral Scientific Research Foundation of Linyi University LYDX2016BS030Project supported by the National Natural Science Foundation of China (No. 21672173), the Shandong Provincial Natural Science Foundation (No. ZR2017PB001, ZR2016CP22), the Doctoral Scientific Research Foundation of Linyi University (No. LYDX2016BS030) and the National Innovative Training Program for College Studentsthe Shandong Provincial Natural Science Foundation ZR2017PB001

Figures(8)

  • Sulfonamides as an important type of chemotherapeutic drugs have been one of the research topics recently. A series of sulfonamide 1, 2, 4-triazoles were successfully synthesized starting from commercial acetanilide via a multi-step sequence of sulfonylation, aminolysis and N-alkylation, and were confirmed by IR, 1H NMR, 13C NMR, MS as well as HRMS spectra. All the synthesized new compounds were evaluated for their in vitro antibacterial and antifungal activities. The bioactive assay showed that most of the synthesized compounds exhibited better inhibitory potency than sulfanilamide against all tested bacterial strains, and most of the compounds gave good anti-Escherichia coli activity in comparison with other microorganisms. Especially, N-(4-(N-(2-(1H-1, 2, 4-triazol-1-yl)ethyl)-N-(3-fluorobenzyl)sulfamoyl)phenyl) acetamide (7b) bearing m-fluorobenzyl group exhibited excellent antibacterial activities against Escherichia coli with minimal inhibition concentration (MIC) value of 16 mg/mL. Preliminary research revealed that compound 7b could effectively intercalate into calf thymus DNA to form compound 7b-DNA complex which might block DNA replication and thus exert antimicrobial activities.
  • 加载中
    1. [1]

      (a) Brown, E. D.; Wright, G. D. Nature 2016, 529, 336.
      (b) Baym, M.; Stone, L. K.; Kishony, R. Science 2016, 351, 40.
      (c) Brown, D. Nat. Rev. Drug Discovery 2015, 14, 821.

    2. [2]

      (a) Gadakh, B.; Van Aerschot, A. Curr. Med. Chem. 2015, 22, 2140.
      (b) Gale, R. T.; Brown, E. D. Curr. Opin. Microbiol. 2015, 27, 69.
      (c) Staker, B. L.; Buchko, G. W.; Myler, P. J. Curr. Opin. Microbiol. 2015, 27, 133.
      (d) Oktar, F. N.; Yetmez, M.; Ficai, D.; Ficai, A.; Dumitru, F.; Pica, A. Curr. Top. Med. Chem. 2015, 15, 1583.

    3. [3]

      (a) Zhang, H. Z.; He, S. C.; Peng, Y. J.; Zhang, H. J.; Gopala, L.; Tangadanchu, V. K. R.; Gan, L. L.; Zhou, C. H. Eur. J. Med. Chem. 2017, 136, 165.
      (b) Zhang, H. Z.; Jeyakkumar, P.; Kumar, K. V.; Zhou, C. H. New J. Chem. 2015, 39, 5776.

    4. [4]

      He, S. C.; Jeyakkumar, P.; Avula, S. R.; Wang, X. L.; Zhang, H. Z.; Zhou, C. H. Sci. Sin.:Chim. 2016, 46, 823(in Chinese).

    5. [5]

      (a) Zessel, K.; Mohring, S.; Hamscher, G.; Kietzmann, M.; Stahl, J. Environ. Toxicol. Chem. 2005, 24, 771.
      (b) Supuran, C. T. Nat. Rev. Drug. Discovery 2008, 7, 168.
      (c) Gawin, R.; Clercq, E. D.; Naesens, L.; Koszytkowska-Stawińska, M. Bioorg. Med. Chem. 2008, 16, 8379.
      (d) Bouissane, L.; Kazzouli, S. E.; Léonce, S.; Pfeiffer, B.; Rakib, E. M.; Khouili, M.; Guillaumet, G. Bioorg. Med. Chem. 2006, 14, 1078.

    6. [6]

      (a) Marques, L. L.; Oliveira, G. M.; Lang, E. S.; Campos, M. M.; Gris, L. R. Inorg. Chem. Commun. 2007, 10, 1083.
      (b) Chohan, Z. H.; Shad, H. A. J. Enzyme Inhib. Med. Chem. 2012, 27, 403.
      (c) Herole, R. A.; Velingkar, V. S. Int. J. Pharm. Chem. 2011, 1, 45.

    7. [7]

      (a) Alanazi, A. M.; El-Azab, A. S.; Al-Suwaidan, I. A.; ElTahir, K. E.; Asiri, Y. A.; Abdel-Aziz, N. I.; Abdel-Aziz, A. A. Eur. J. Med. Chem. 2015, 92, 115.
      (b) Laev, S. S.; Salakhutdinov, N. F. Bioorg. Med. Chem. 2015, 23, 3059.

    8. [8]

      Wang, X. L.; Gan, L. L.; Yan, C. Y.; Zhou, C. H. Sci. Sin.:Chim. 2011, 41, 451(in Chinese).

    9. [9]

      (a) Zhang, H. Z.; Damu, G. L. V.; Cai, G. X.; Zhou, C. H. Eur. J. Med. Chem. 2013, 64, 329.
      (b) Fang, B.; Zhou, C. H.; Rao, X. C. Eur. J. Med. Chem. 2010, 45, 4388.
      (c) Dai, L. L.; Zhang, H. Z.; Nagarajan, S.; Rasheed, S.; Zhou, C. H. Med. Chem. Commun. 2015, 6, 147.

    10. [10]

    11. [11]

      (a) Jeyakkumar, P.; Zhang, L.; Avula, S. R.; Zhou, C. H. Eur. J. Med. Chem. 2016, 122, 205.
      (b) Zhang, H. Z.; Lin, J. M.; Rasheed, S.; Zhou, C. H. Sci. China, Chem. 2014, 57, 807.

    12. [12]

      Berdis, A. J. Biochemistry 2008, 47, 8253.  doi: 10.1021/bi801179f

    13. [13]

      Rahban, M.; Divsalar, A.; Saboury, A. A.; Golestani, A. J. Phys. Chem. C 2010, 114, 5798.  doi: 10.1021/jp910656g

    14. [14]

      (a) Li, X. L.; Hu, Y. J.; Wang, H.; Yu, B. Q.; Yue, H. L. Biomacromolecules 2012, 13, 873.
      (b) Zhang, G. W.; Fu, P.; Wang, L.; Hu, M. M. J. Agric. Food Chem. 2011, 59, 8944.

    15. [15]

      Ni, Y.; Dua, S.; Kokot, S. Anal. Chim. Acta 2007, 584, 19.  doi: 10.1016/j.aca.2006.11.006

    16. [16]

      Kadi, A. A.; El-Brollosy, N. R.; Al-Deeb, O. A; Habib, E. E.; Ibrahim, T. M.; El-Emam, A. A. Eur. J. Med. Chem. 2007, 42, 235.  doi: 10.1016/j.ejmech.2006.10.003

  • 加载中
    1. [1]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    2. [2]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    3. [3]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    11. [11]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    15. [15]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    19. [19]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    20. [20]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

Metrics
  • PDF Downloads(8)
  • Abstract views(3005)
  • HTML views(498)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return