Citation: Zhang Fuchen, Wang Qiuxia, Wang Lipeng, Sun Shuai, Bai Yongping. Synthesis and Performance Characterization of Optical Copolyesters Based on Isomannite and Isophthalic Acid[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3229-3235. doi: 10.6023/cjoc201706012 shu

Synthesis and Performance Characterization of Optical Copolyesters Based on Isomannite and Isophthalic Acid

  • Corresponding author: Bai Yongping, baifengbai@hit.edu.cn
  • Received Date: 12 June 2017
    Revised Date: 27 July 2017
    Available Online: 16 December 2017

Figures(10)

  • Poly(ethylene terephthalate-co-isomannide terephthalate-co-ethylene isophthalate-co-isomannide isophthalate) (PEⅡT) was synthesized. The crystallization, optical and thermal performances of PEⅡT were investigated by using differential scanning calorimetry (DSC), ultraviolet-visible-near-infrared spectroscopy (UV-Vis-NIR), X-ray diffraction (XRD) and polarized light microscopy (POM). The results demonstrate that the crystallinity and crystallization rate of PEⅡT can be reduced effectively with the increase of the content of isophthalic acid units in copolyester PEⅡT. The increase of the content of isophthalic acid units made the steric hindrance of PEⅡT molecular chains increase, resulting in the decrease of crystallization ability, which is mainly because its cooling crystallization temperature gradually rise and the melt crystallization temperature gradually decrease until no generation of thermal crystallization phenomenon. Due to the decrease of the crystalline part, the haze of PEⅡT can be completely reduced to zero, and the light transmittance can reach 90.7%. At the same time, it was found that the decrease of PEⅡT light transmittance stems from the increase of yellowing degree, which makes the blue violet light of 330~550 nm wavelength absorbed by PEⅡT, leading to the low light transmittance. The melting point of PEⅡT is greatly affected by the content of isophthalic acid, but it still maintains good thermal decomposition performance.
  • 加载中
    1. [1]

    2. [2]

      (a) Jabarin, S. A. Polym. Eng. Sci. 1982, 22, 815.
      (b) Maruhashi, Y.; Iida, S. Polym. Eng. Sci. 2001, 41, 1987.

    3. [3]

      (a) Yan, H. H.; Chen, S.; Lu, M.; Zhu, X.; Li, Y. Q.; Wu, D. Z.; Tu, Y. F.; Zhu, X. L. Mater. Horiz. 2014, 1, 247.
      (b) Seto, R.; Kojima, T.; Hosokawa, K.; Koyama, Y.; Konishi, G.; Takata, T. Polymer 2010, 51, 4744.

    4. [4]

      Chen, Y. H.; Li, X.; Zhan, M. S. Polym. Polym. Compos. 2011, 19, 123.

    5. [5]

      Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra, A. C.; Coelho, J. F.; Freire, C. S.; Silvestre, A. J. Polym. Chem. 2014, 5, 3119.  doi: 10.1039/C3PY01213A

    6. [6]

      Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J.-P. Prog. Polym. Sci. 2010, 35, 578.  doi: 10.1016/j.progpolymsci.2009.10.001

    7. [7]

      (a) Wu, T. M.; Chang, C. C.; Yu, T. L. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2515.
      (b) Finelli, L.; Fiorini, M.; Siracusa, V.; Lotti, N.; Munari, A. J. Appl. Polym. Sci. 2004, 92, 186.
      (c) Karayannidis, G. P.; Sideridou, I. D.; Zamboulis, D. N.; Bikiaris, D. N.; Sakalis, A. J. J. Appl. Polym. Sci. 2000, 78, 200.

    8. [8]

      MacDonald, W. A. Polym. Int. 2002, 51, 923.  doi: 10.1002/(ISSN)1097-0126

    9. [9]

      (a) Kim, Y. Y.; Heo, K.; Kim, K.-W.; Kim, J.; Shin, T. J.; Kim, J. R.; Yoon, I. S.; Ree, M. Macromol. Res. 2014, 22, 194.
      (b) Konstantopoulou, M.; Terzopoulou, Z.; Nerantzaki, M.; Tsagka-lias, J.; Achilias, D. S.; Bikiaris, D. N.; Exarhopoulos, S.; Papa-georgiou, D. G.; Papageorgiou, G. Z. Eur. Polym. J. 2017, 89, 349.
      (c) Qiu, D. L.; Zhang, P.; Zhang, S. Y.; Sun, J.; Wang, J. J.; Dai, L. X. Polym. Adv. Technol. 2015, 26, 1130.

    10. [10]

      Jeziorny, A. Polymer 1978, 19, 1142.  doi: 10.1016/0032-3861(78)90060-5

    11. [11]

      (a) Belletête, M.; Ranger, M.; Beaupré, S.; Leclerc, M.; Durocher, G. Chem. Phys. Lett. 2000, 316, 101.
      (b) Zhao, Y. B.; Wang, F.; Fu, Q.; Shi, W. F. Polymer 2007, 48, 2853.
      (c) Sakurai, K.; Fuji, M. Polym. J. 2000, 32, 676.

    12. [12]

      (a) Martins, C. I.; Cakmak, M. Polymer 2007, 48, 2109.
      (b) Cakmak, M.; White J. L.; Spruiell, J. E. Polym. Eng. Sci. 1989, 29, 1534.

    13. [13]

      (a) Tsai, Y.; Fan, C.-H.; Wu, J.-H. J. Polym. Res. 2016, 23, 1.
      (b) Ahn, J. S.; Kang, S. M.; Kim, M. K.; Kim, Y. J.; Yoon, K. C.; Park, O. O. Macromol. Res. 2016, 24, 609.

    14. [14]

      (a) Gheno, G.; Ganzerla, R.; Bortoluzzi, M.; Paganica, R. Prog. Org. Coat. 2015, 78, 239.
      (b) Skaja, A.; Croll, S. Polym. Degrad. Stab. 2003, 79, 123.

    15. [15]

      Zhang, F. C.; Kang, H. J.; Bai, Y. P.; Jiang, B.; Huang, Y. D.; Liu, L. RSC Adv. 2016, 6, 67677.  doi: 10.1039/C6RA09055A

  • 加载中
    1. [1]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    2. [2]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(6)
  • Abstract views(2980)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return