Citation: Nie Biao, Jin Chuanfei, Zhong Wenhe, Ren Qingyun, Zhang Yingjun, Zhang Ji. Application and Recent Progress of Phosphoramidate Prodrugs Strategies and ProTide Technology in Drug Discovery[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2818-2840. doi: 10.6023/cjoc201705022 shu

Application and Recent Progress of Phosphoramidate Prodrugs Strategies and ProTide Technology in Drug Discovery

  • Corresponding author: Zhang Ji, zhangji@hecpharm.com
  • Received Date: 16 May 2017
    Revised Date: 20 June 2017
    Available Online: 14 November 2017

    Fund Project: Project supported by the Introduction of Innovative R&D Team Program of Guangdong Province (No. 201301Y0105381261) and the State Key Laboratory of Anti-Infective Drug Development (Sunshine Lake Pharma Co. Ltd) (No. 2015DQ780357)the Introduction of Innovative R&D Team Program of Guangdong Province 201301Y0105381261the State Key Laboratory of Anti-Infective Drug Development (Sunshine Lake Pharma Co. Ltd) 2015DQ780357

Figures(41)

  • This review provides the brief history for the development and advances of ProTide strategies in the field of antiviral and anticancer pharmaceutical development. A summary is provided for the synthesis of nucleoside phosphoramidates, recent breakthroughs in the stereoselective assembly of chiral prodrugs and its application. This technology is extremely useful and has simplified innovative drug design of phosphorous-containing prodrugs. Simplifying such structural modification may create a new avenue of competition in the invention of new medicines from the parent drug.
  • 加载中
    1. [1]

      (a) Babusis, D.; Phan, T. K.; Lee, W. A.; Watkins, W. J.; Ray, A. S. Mol. Pharm. 2013, 10, 459.
      (b) Lee, W. A.; He, G. X.; Eisenberg, E.; Cihlar, T.; Swaminathan, S.; Mulato, A.; Cundy, K. C. Antimicrob. Agents. Chemother. 2005, 49, 1898.
      (c) Birkus, G.; Wang, R.; Liu, X. H.; Kutty, N.; MacArthur, H.; Cihlar, T.; Gibbs, C.; Swaminathan, S.; Lee, W.; McDermott, M. Antimicrob. Agents. Chemother. 2007, 51, 543.

    2. [2]

      (a) Thornton, P. J.; Kadri, H.; Miccoli, A.; Mehellou, Y. J. Med. Chem. 2016, 59, 10400.
      (b) Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. Nat. Rev. Drug Discovery 2013, 12, 447.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Corson, T. W.; Crews, C. M. Cell 2007, 130, 769.  doi: 10.1016/j.cell.2007.08.021

    7. [7]

      Patil, S.; Lis, L. G.; Schumacher, R. J.; Norris, B. J.; Morgan, M. L.; Cuellar, R. A. D.; Blazar, B. R.; Suryanarayanan, R.; Gurvich, V. J.; Georg, G. I. J. Med. Chem. 2015, 58, 9334.  doi: 10.1021/acs.jmedchem.5b01329

    8. [8]

      Chassaing, C.; Berger, M.; Heckeroth, A.; Ilg, T.; Jaeger, M.; Kern, C.; Schmid, K.; Uphoff, M. J. Med. Chem. 2008, 51, 1111.  doi: 10.1021/jm701456r

    9. [9]

      Kleeb, S.; Jiang, X. H.; Frei, P.; Sigl, A.; Bezencon, J.; Bamberger, K.; Schwardt, O.; Ernst, B. J. Med. Chem. 2016, 59, 3163.  doi: 10.1021/acs.jmedchem.5b01923

    10. [10]

      Chowdhury, U. R.; Viker, K. B.; Stolz, K. L.; Holman, B. H.; Fautsch, M. P.; Dosa, P. I. J. Med. Chem. 2016, 59, 6221  doi: 10.1021/acs.jmedchem.6b00406

    11. [11]

      Mehellou, Y. C. Chem. Med. Chem. 2016, 11, 1114.  doi: 10.1002/cmdc.v11.11

    12. [12]

      Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154.  doi: 10.1021/cr5002035

    13. [13]

      (a) McGuigan, C.; Pathirana, R. N.; Mahmood, N.; Hay, A. J. Bioorg. Med. Chem. Lett. 1992, 2, 701.
      (b) Mehellou, Y.; Balzarini, J.; McGuigan, C. Chem. Med. Chem. 2009, 4, 1779.

    14. [14]

      Cahard, D.; McGuigan, C.; Balzarini, J. Mini. Rev. Med. Chem. 2004, 4, 371.
       

    15. [15]

      Maiti, M.; Persoons, L.; Andrei, G.; Snoeck, R.; Balzarini, J.; Herdewijn, P. Chem. Med. Chem. 2013, 8, 985  doi: 10.1002/cmdc.201300035

    16. [16]

      Piplani, M.; Rana, A. C.; Sharma, P. C. J. Pharm. Pharm. Sci. 2016, 19, 82.  doi: 10.18433/J3X61S

    17. [17]

      McGuigan, C.; Serpi, M.; Bibbo, R.; Roberts, H.; Hughes, C.; Caterson, B.; Gibert, A. T.; Verson, C. R. A. J. Med. Chem. 2008, 51, 5807.  doi: 10.1021/jm800594c

    18. [18]

      Zhou, L. H.; Zhang, H. W.; Tao, S. J.; Ehteshami, M.; Cho, J. H.; McBrayer, T. R.; Tharnish, P.; Whitaker, T.; Amblard, F.; Coats, S. J.; Schinazi, R. F. ACS Med. Chem. Lett. 2016, 7, 17.  doi: 10.1021/acsmedchemlett.5b00402

    19. [19]

      Lioux, T.; Mauny, M. A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A. S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. J. Med. Chem. 2016, 59, 10253.  doi: 10.1021/acs.jmedchem.6b01300

    20. [20]

      Dabkowski, W.; Skrzypczynski, Z.; Michalski, J.; Piel, N.; McLaughlin, L. W.; Cramer, F. Nucleic Acids Res. 1984, 12, 9123.  doi: 10.1093/nar/12.23.9123

    21. [21]

      (a) McGuigan, C.; Harris, S. A.; Daluge, S. M.; Gudmundsson, K. S.; McLean, E. W.; Burnette, T. C.; Marr, H.; Hazen, R.; Condreay, L. D.; Johnson, L.; De Clercq, E.; Balzarini, J. J. Med. Chem. 2005, 48, 3504.
      (b) Sari, O.; Bassit, L.; Gavegnano, C.; McBrayer, T. R.; McCormick, L.; Cox, B.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Tetrahedron Lett. 2017, 58, 642.
      (c) Zhou, L. H.; Zhang, H. W.; Tao, S. J.; Ehteshami, M.; Cho, J. H.; McBrayer, T. R.; Tharnish, P.; Whitaker, T.; Amblard, F.; Coats, S. J.; Schinazi, R. F. ACS Med. Chem. Lett. 2016, 7, 17.

    22. [22]

      Cho, A.; Zhang, L. J.; Xu, J.; Lee, R.; Butler, T.; Metobo, S.; Aktoudianakis, V.; Lew, W.; Ye, H.; Clarke, M.; Doerffler, E.; Byun, D.; Wang, T.; Babusis, D.; Carey, A. C.; German, P.; Sauer, D.; Zhong, W. D.; Rossi, S.; Fenaux, M.; McHutchison, J. G.; Perry, J.; Feng, J.; Ray, A. S.; Kim, C. U. J. Med. Chem. 2014, 57, 1812.  doi: 10.1021/jm400201a

    23. [23]

      (a) Kandil, S.; Balzarini, J.; Rat, S.; Brancale, A.; Westwell, A. D.; McGuigan, C. Bioorg. Med. Chem. Lett. 2016, 26, 5618.
      (b) Mehellou, Y.; McGuigan, C.; Brancale, A.; Balzarini, J. Bioorg. Med. Chem. Lett. 2007, 17, 3666.

    24. [24]

      Mahmoud, S.; Li, H.; McBrayer, T. R.; Bassit, L.; Hammad, S. F.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Nucleosides Nucleotides Nucleic Acids 2007, 36, 66.
       

    25. [25]

      Gudmundsson, K. S.; Daluge, S. M.; Johnson, L. C.; Jansen, R.; Hazen, R.; Condreay, L. D.; McGuigan, C. Nucleosides Nucleotides Nucleic Acids 2003, 22, 1953.  doi: 10.1081/NCN-120025242

    26. [26]

      Serpi, M.; Madela, K.; Pertusati, F.; Slusarczyk, M. Current Protocols in Nucleic Acid Chemistry, Wiley, New York, 2013, Chapter 15.

    27. [27]

      Vanheusden, V.; Herdewijn, P.; Van Calenbergh, S. J. Pharm. Belg. 2002, 41.
       

    28. [28]

      Gao, L. J.; De Jonghe, S.; Herdewijn, P. Org. Lett. 2016, 18, 5816.  doi: 10.1021/acs.orglett.6b02764

    29. [29]

      Simmons, B.; Liu, Z. Q.; Klapars, A.; Bellomo, A.; Silverman, S. M. Org. Lett. 2017, 19, 2218.  doi: 10.1021/acs.orglett.7b00469

    30. [30]

      Liu, C.; Dumbre, S. G.; Pannecouque, C.; Huang, C. S.; Ptak, R. G.; Murray, M. G.; De Jonghe, S.; Herdewijn, P. J. Med. Chem. 2016, 59, 9513.  doi: 10.1021/acs.jmedchem.6b01260

    31. [31]

      Pertusati, F.; Hinsinger, K.; Flynn, A. S.; Powell, N.; Tristram, A.; Balzarini, J.; McGuigan, C. Eur. J. Med. Chem. 2014, 78, 259.  doi: 10.1016/j.ejmech.2014.03.051

    32. [32]

      (a) Celewicz, L.; Jozwiak, A.; Ruszkowski, P.; Laskowska, H.; Olejnik, A.; Czarnecka, A.; Hoffmann, M.; Hladon, B. Bioorg. Med. Chem. 2011, 19, 6375.
      (b) Aliouane, L.; Rigaud, B.; Pfund, E.; Jean, L.; Renard, P. Y.; Lequeux, T. Tetrahedron Lett. 2011, 52, 259.

    33. [33]

      Pertusati, F.; McGuigan, C. Chem. Commun. 2015, 51, 8070.  doi: 10.1039/C5CC00448A

    34. [34]

      Ross, B. S.; Reddy, P. G.; Zhang, H. R.; Rachakonda, S.; Sofia, M. J. J. Org. Chem. 2011, 76, 8311.  doi: 10.1021/jo201492m

    35. [35]

      Ryan, M.; Liu, T.; Dahlquist, F. W.; Griffith, O. H. Biochemistry 2001, 40, 9743.  doi: 10.1021/bi010958m

    36. [36]

      (a) Eastgate, M. D.; Schmidt, M. A.; Fandrick, K. R. Nat. Rev. Chem. 2017, 1, 0016, DOI: 10.1038/s41570-017-0016.
      (b) Tran, K.; Beutner, G. L.; Schmidt, M.; Janey, J.; Chen, K.; Rosso, V.; Eastgate, M. D. J. Org. Chem. 2015, 80, 4994.

    37. [37]

      (a) Liu, S.; Zhang, Z. F.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. B. Tetrahedron: Asymmetry 2012, 23, 329.
      (b) Zhang, Z. F.; Xie, F.; Jia, J.; Zhang, W. B. J. Am. Chem. Soc. 2010, 132, 15939.

    38. [38]

      DiRocco, D. A.; Ji, Y. N.; Sherer, E. C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; Brunskill, A.; Ruck, R. T.; Campeau, L.-C.; Davies, I. W. Science 2017, 356, 426.  doi: 10.1126/science.aam7936

    39. [39]

      McGuigan, C.; Murziani, P.; Slusarczyk, M.; Gonczy, B.; Vande Voorde, J.; Liekens, S.; Balzarini, J. J. Med. Chem. 2011, 54, 7247.  doi: 10.1021/jm200815w

    40. [40]

      McGuigan, C.; Madela, K.; Aljarah, M.; Gilles, A.; Brancale, A.; Zonta, N.; Chamberlain, S.; Vernachio, J.; Hutchins, J.; Hall, A.; Ames, B.; Gorovits, E.; Ganguly, B.; Kolykhalov, A.; Wang, J.; Muhammad, J.; Patti, J. M.; Henson, G. Bioorg. Med. Chem. Lett. 2010, 20, 4850.  doi: 10.1016/j.bmcl.2010.06.094

    41. [41]

      Bourdin, C.; McGuigan, C.; Brancale, A.; Chamberlain, S.; Vernachio, J.; Hutchins, J.; Gorovits, E.; Kolykhalov, A.; Muhammad, J.; Patti, J.; Henson, G.; Bleiman, B.; Bryant, K. D.; Ganguly, B.; Hunley, D.; Obikhod, A.; Walters, C. R.; Wang, J.; Ramamurty, C. V. S.; Battina, S. K.; Rao, C. S. Bioorg. Med. Chem. Lett. 2013, 23, 2260.  doi: 10.1016/j.bmcl.2012.12.004

    42. [42]

      Gardelli, C.; Attenni, B.; Donghi, M.; Meppen, M.; Pacini, B.; Harper, S.; Di Marco, A.; Fiore, F.; Giuliano, C.; Pucci, V.; Laufer, R.; Gennari, N.; Marcucci, I.; Leone, J. F.; Olsen, D. B.; MacCoss, M.; Rowley, M.; Narjes, F. J. Med. Chem. 2009, 52, 5394.  doi: 10.1021/jm900447q

    43. [43]

      Derudas, M.; Carta, D.; Brancale, A.; Vanpouille, C.; Lisco, A.; Margolis, L.; Balzarini, J.; McGuigan, C. J. Med. Chem. 2009, 52, 5520.  doi: 10.1021/jm9007856

    44. [44]

      Slusarczyk, M.; Lopez, M. H.; Balzarini, J.; Mason, M.; Jiang, W. G.; Blagden, S.; Thompson, E.; Ghazaly, E.; McGuigan, C. J. Med. Chem. 2014, 57, 1531.  doi: 10.1021/jm401853a

    45. [45]

      Pertusati, F.; Hinsinger, K.; Flynn, A. S.; Powell, N.; Tristram, A.; Balzarini, J.; McGuigan, C. Eur. J. Med. Chem. 2014, 78, 259.  doi: 10.1016/j.ejmech.2014.03.051

    46. [46]

      Velanguparackel, W.; Hamon, N.; Balzarini, J.; McGuigan, C.; Westwell, A. D. Bioorg. Med. Chem. Lett. 2014, 24, 2240.  doi: 10.1016/j.bmcl.2014.03.092

    47. [47]

      Toti, K. S.; Derudas, M.; Pertusati, F.; Sinnaeve, D.; Van den Broeck, F.; Margamuljana, L.; Martins, J. C.; Herdewijn, P.; Balzarini, J.; McGuigan, C.; Van Calenbergh, S. J. Org. Chem. 2014, 79, 5097.  doi: 10.1021/jo500659e

    48. [48]

      McGuigan, C.; Derudas, M.; Gonczy, B.; Hinsinger, K.; Kandil, S.; Pertusati, F.; Serpi, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; McHugh, T. D.; Maitra, A.; Akorli, E.; Evangelopoulos, D.; Bhakta, S. Bioorg. Med. Chem. 2014, 22, 2816.  doi: 10.1016/j.bmc.2014.02.056

    49. [49]

      Jonckers, T. H. M.; Tahri, A.; Vijgen, L.; Berke, J. M.; Lachau-Durand, S.; Stoops, B.; Snoeys, J.; Leclercq, L.; Tambuyzer, L.; Lin, T. I.; Simmen, K.; Raboisson, P. J. Med. Chem. 2016, 59, 5790.  doi: 10.1021/acs.jmedchem.6b00382

    50. [50]

      McGuigan, C.; Kelleher, M. R.; Perrone, P.; Mulready, S.; Luoni, G.; Daverio, F.; Rajyaguru, S.; Le Pogam, S.; Najera, I.; Martin, J. A.; Klumpp, K.; Smith, D. B. Bioorg. Med. Chem. Lett. 2009, 19, 4250.  doi: 10.1016/j.bmcl.2009.05.099

    51. [51]

      Derudas, M.; Brancale, A.; Naesens, L.; Neyts, J.; Balzarini, J.; McGuigan, C. Bioorg. Med. Chem. 2010, 18, 2748.  doi: 10.1016/j.bmc.2010.02.015

    52. [52]

      Derudas, M.; Quintiliani, M.; Brancale, A.; Andrei, G.; Snoeck, R.; Balzarini, J.; McGuigan, C. Antivir. Chem. Chemother. 2010, 21, 15.  doi: 10.3851/IMP1661

    53. [53]

      McGuigan, C.; Thiery, J. C.; Daverioa, F.; Jiang, W. G.; Davies, G.; Mason, M. Bioorg. Med. Chem. 2005, 13, 3219.  doi: 10.1016/j.bmc.2005.02.041

    54. [54]

      Siegel, D.; Hui, H. C.; Doerffler, E.; Clarke, M. O.; Chun, K.; Zhang, L. J.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; Wang, Q.; Wolfe, L.; Jordan, R.; Soloveva, V.; Knox, J.; Perry, J.; Perron, M.; Stray, K. M.; Barauskas, O.; Feng, J. Y.; Xu, Y. L.; Lee, G.; Rheingold, A. L.; Ray, A. S.; Bannister, R.; Strickley, R.; Swa-minathan, S.; Lee, W. A.; Bavari, S.; Cihlar, T.; Lo, M. K.; Warren, T. K.; Mackman, R. L. J. Med. Chem. 2017, 60, 1648.  doi: 10.1021/acs.jmedchem.6b01594

    55. [55]

      Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L. J.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y. L; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S. S.; Fearns, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Nature 2016, 531, 381.  doi: 10.1038/nature17180

    56. [56]

      Meneghesso, S.; Vanderlinden, E.; Brancale, A.; Balzarini, J.; Naesens, L.; McGuigan, C. Chem. Med. Chem. 2013, 8, 415.  doi: 10.1002/cmdc.v8.3

    57. [57]

      Kandil, S.; Balzarini, J.; Rat, S.; Brancale, A.; Westwell, A. D.; McGuigan, C. Bioorg. Med. Chem. Lett. 2016, 26, 5618.  doi: 10.1016/j.bmcl.2016.10.077

    58. [58]

      Mehellou, Y.; Valente, R.; Mottram, H.; Walsby, E.; Mills, K. I.; Balzarini, J.; McGuigan, C. Bioorg. Med. Chem. 2010, 18, 2439.  doi: 10.1016/j.bmc.2010.02.059

    59. [59]

      Meneghesso, S.; Vanderlinden, E.; Stevaert, A.; McGuigan, C.; Balzarini, J.; Naesens, L. Antivir. Res. 2012, 94, 35.  doi: 10.1016/j.antiviral.2012.01.007

    60. [60]

      McGuigan, C.; Bourdin, C.; Derudas, M.; Hamon, N.; Hinsinger, K.; Kandil, S.; Madela, K.; Meneghesso, S.; Pertusati, F.; Serpi, M.; Slusarczyk, M.; Chamberlain, S.; Kolykhalov, A.; Vernachio, J.; Vanpouille, C.; Introini, A.; Margolis, L.; Balzarini, J. Eur. J. Med. Chem. 2013, 70, 326.  doi: 10.1016/j.ejmech.2013.09.047

    61. [61]

      McGuigan, C.; Madela, K.; Aljarah, M.; Bourdin, C.; Arrica, M.; Barrett, E.; Jones, S.; Kolykhalov, A.; Bleiman, B.; Bryant, K. D.; Ganguly, B.; Gorovits, E.; Henson, G.; Hunley, D.; Hutchins, J.; Muhammad, J.; Obikhod, A.; Patti, J.; Walters, C. R.; Wang, J.; Vernachio, J.; Ramamurty, C. V. S.; Battina, S. K.; Chamberlain, S. J. Med. Chem. 2011, 54, 8632.  doi: 10.1021/jm2011673

    62. [62]

      Perrone, P.; Luoni, G. M.; Kelleher, M. R.; Daverio, F.; Angell, A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin, J. A.; Leveque, V.; Pogam, S. L.; Najera, I.; Klumpp, K.; Smith, D. B.; McGuigan, C. J. Med. Chem. 2007, 50, 1840.  doi: 10.1021/jm0613370

    63. [63]

      Osgerby, L.; Lai, Y. C.; Thornton, P. J.; Amalfitano, J.; Le Duff, C. S.; Jabeen, I.; Kadri, H.; Miccoli, A.; Tucker, J. H. R.; Muqit, M. M. K.; Mehellou, Y. J. Med. Chem. 2017, 60, 3518.  doi: 10.1021/acs.jmedchem.6b01897

  • 加载中
    1. [1]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    2. [2]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    10. [10]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    11. [11]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    14. [14]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    19. [19]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(313)
  • Abstract views(17172)
  • HTML views(3821)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return