Citation: Hao Wenyan, Wang Yuyun, Yang Guomin, Liu Yunyun. Nickel-Catalyzed C-H Halogenation of 8-Aminoquinolines for the Synthesis of C(5) and C(7) Di-halogenated Quinolines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2678-2684. doi: 10.6023/cjoc201704049 shu

Nickel-Catalyzed C-H Halogenation of 8-Aminoquinolines for the Synthesis of C(5) and C(7) Di-halogenated Quinolines

  • Corresponding author: Hao Wenyan, wenyanhao@jxnu.edu.cn Liu Yunyun, chemliuyunyun@jxnu.edu.cn
  • Received Date: 28 April 2017
    Revised Date: 23 June 2017
    Available Online: 4 October 2017

    Fund Project: the Scientific Research Fund of Jiangxi Provincial Education Department GJJ160285the National Natural Science Foundation of China 21762023the National Natural Science Foundation of China 21562024Project supported by the National Natural Science Foundation of China (Nos. 21562024, 21762023) and the Scientific Research Fund of Jiangxi Provincial Education Department (No. GJJ160285)

Figures(5)

  • A simple and efficient nickel-catalyzed oxidative halogenation (Cl, Br) of C(5) and C(7) C-H bond of 8-aminoquinoline amides has been developed. This method employed low-cost and easy availability nickel as catalyst and oxygen as oxidant. The reactions have good functional groups compatibility, giving highly selective C(5) and C(7) di-halogenated products in good to excellent yields.
  • 加载中
    1. [1]

      (a) Kouznetsov, V. V. ; Mendez, L. Y. ; Gomez, C. M. Curr. Org. Chem. 2005, 9, 141.
      (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
      (c) Tokoro, Y. ; Nagai, A. ; Kokado, K. ; Chujo, Y. Macromolecules 2009, 42, 2988.
      (d) Solomon, V. R. ; Lee, H. Curr. Med. Chem. 2011, 18, 1488.
      (e) Liu, G. ; Yi, M. ; Liu, L. ; Wang, J. ; Wang, J. Chem. Commun. 2015, 51, 2911.

    2. [2]

      (a) Madrid, P. B. ; Sherrill, J. ; Liou, A. P. ; Weisman, J. L. ; Derisi, J. L. ; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.
      (b) Tardito, S. ; Barilli, A. ; Bassanetti, I. ; Tegoni, M. ; Bussolati, O. ; Franchi-Gazzola, R. ; Mucchino, C. ; Marchio, L. J. Med. Chem. 2012, 55, 10448.
      (c) Abouelhassan, Y. ; Garrison, V. G. ; Burch, M. ; Wong, W. ; Norwood, V. M. ; Huigens, R. W. Bioorg. Med. Chem. Lett. 2014, 24, 5076.
      (d) Vippagunta, S. R. ; Dorn, A. ; Matile, H. ; Bhattacharjee, A. K. ; Karle, J. M. ; Ellis, W. Y. ; Ridley, R. G. ; Vennerstrom, J. L. J. Med. Chem. 1999, 42, 4630.
      (e) Bhat, S. ; Shim, J. S. ; Zhang, F. ; Chong, C. R. ; Liu, J. O. Org. Biomol. Chem. 2012, 10, 2979.
      (f) Borchardt, R. T. J. Med. Chem. 1973, 16, 382.
      (g) Liu, Y. -C. ; Wei, J. -H. ; Chen, Z. -F. ; Liu, M. ; Gu, Y. -Q. ; Huang, K. -B. ; Li, Z. -Q. ; Liang, H. Eur. J. Med. Chem. 2013, 69, 554.

    3. [3]

      (a) Jiang, H. ; Taggart, H. ; Zhang, X. ; Benbrook, D. M. ; Lind, S. E. ; Ding, W. -Q. Cancer Lett. 2011, 312, 11.
      (b) Heidary, D. K. ; Howerton, B. S. ; Glazer, E. C. J. Med. Chem. 2014, 57, 8936.

    4. [4]

      (a) Sun, K. ; Lv, Y. ; Wang, J. ; Sun, J. ; Liu, L. ; Jia, M. ; Liu, X. ; Z. Li, Z. ; Wang, X. ; Org. Lett. 2015, 17, 4408.
      (b) Wasa, M. ; Worrell, B. T. ; Yu, J. Q. Angew. Chem. , Int. Ed. 2010, 49, 1275.
      (c) Tobisu, M. ; Hyodo, I. ; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070.
      (d) Berman, A. M. ; Lewis, J. C. ; Bergman, R. G. ; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.
      (e) Zhao, D. ; Wang, W. ; Yang, F. ; Lan, J. ; Yang, L. ; Gao, G. ; You, J. Angew. Chem. , Int. Ed. 2009, 48, 3296.

    5. [5]

      (a) Boudet, N. ; Lachs, J. R. ; Knochel, P. Org. Lett. 2007, 9, 5525.
      (b) Kwak, J. ; Kim, M. ; Chang, S. J. Am. Chem. Soc. 2011, 133, 3780.
      (c) Chen, Q. ; du Jourdin, X. M. ; Knochel, P. J. Am. Chem. Soc. 2013, 135, 4958.
      (d) Tsai, C. -C. ; Shih, W. -C. ; Fang, C. -H. ; Li, C. -Y. ; Ong, T. -G. ; Yap, G. P. J. Am. Chem. Soc. 2010, 132, 11887.

    6. [6]

      (a) Guo, H. ; Chen, M. ; Jiang, P. ; Chen, J. ; Pan, L. ; Wang, M. ; Xie, C. ; Zhang, Y. Tetrahedron 2015, 71, 70.
      (b) Xu, J. ; Zhu, X. ; Zhou, G. ; Ying, B. ; Ye, P. ; Su, L. ; Shen, C. ; Zhang, P. Org. Biomol. Chem. 2016, 14, 3016.
      (c) Liu, X. X. ; Wu, Z, Y. ; Luo, X. L. ; He, Y, Q. ; Zhou, X, Q. ; Fan, Y. X. ; Huang. G. S. RSCAdv. 2016, 6, 71485.

    7. [7]

    8. [8]

      For selected example, (a) Zhang, J. ; Chen, T. ; Yang, J. ; Han, L. Chem. Commun. 2015, 51, 7540.
      (b) Li, X. ; Feng, Z. ; Jiang, Z. ; Zhang, X. Org. Lett. 2015, 17, 5570.
      (c) Li, K. ; Wu, Q. ; Lan, J. ; You, J. Nat. Commun. 2015, 6, 8404.
      (d) Jin, L. ; Wan, L. ; Feng, J. ; Cai, C. Org. Lett. 2015, 17, 4726.

    9. [9]

      (a) Cho, C. S. ; Lee, J. W. ; Lee, D. Y. ; Shim, S. C. ; Kim, T. J. Chem. Commun. 1996, 2115.
      (b) Nogi, K. ; Fujihara, T. ; Terao, J. ; Tsuji, Y. J. Org. Chem. 2015, 80, 11618.
      (c) Tjutrins, J. ; Shao, J. ; Yempally, V. ; Bengali, A. A. ; Arndtsen, B. A. Organometallics 2015, 34, 1802.
      (d) Lo, W. ; Hu, C. ; Berenson, T. ; Tracer, N. ; Shlian, D. ; Khaloo, M. ; Benhaim, A. ; Jiang, J. Chem. Commun. 2015, 51, 9432.
      (e) Hoshimoto, Y. ; Ohata, T. ; Sasaoka, Y. ; Ohashi, M. ; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 15877.

    10. [10]

      (a) Ohashi, M. ; Kishizaki, O. ; Ikeda, H. ; Ogoshi, S. J. Am. Chem. Soc. 2009, 131, 9160.
      (b) Sato, Y. ; Saito, N. ; Mori, M. J. Am. Chem. Soc. 2000, 122, 2371.
      (c) Yeh, C. H. ; Korivi, R. P. ; Cheng, C. H. Angew. Chem. , Int. Ed. 2008, 47, 4892.
      (d) Stolley, R. M. ; Duong, H. A. ; Thomas, D. R. ; Louie, J. J. Am. Chem. Soc. 2012, 134, 15154.
      (e) Thakur, A. ; Facer, M. E. ; Louie, J. Angew. Chem. , Int. Ed. 2013, 52, 12161.

    11. [11]

      Zhan, B.-B.; Liu, Y.-H.; Hu, F.; Shi, B.-F. Chem. Commun. 2016, 52, 4934.  doi: 10.1039/C6CC00822D

    12. [12]

      (a) Hao, W. Y. ; Tian, J. ; Li, W. ; Shi, R. ; Huang, Z. ; Lei. A. W. Chem. Asian J. 2016, 11, 1664.
      (b) Wan, J. -P. ; Li, Y. ; Liu, Y. Org. Chem. Front. 2016, 3, 768.
      (c) Liu, Y. ; Huang, M. ; Wei, L. Asian J. Org. Chem. 2017, 6, 41.

    13. [13]

      He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Org. Lett. 2016, 18, 6054.  doi: 10.1021/acs.orglett.6b02998

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    4. [4]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    9. [9]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    10. [10]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    12. [12]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    13. [13]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    14. [14]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    15. [15]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    16. [16]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    19. [19]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    20. [20]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

Metrics
  • PDF Downloads(5)
  • Abstract views(1687)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return