Citation: Yang Quanli, Song Yuye, Yu Ping, Wang Long, Liu Mingguo, Huang Nianyu. 1, 8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-Promoted Stere-oselective Synthesis of Oxazolidin-2-(thi)one Derivatives[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3177-3185. doi: 10.6023/cjoc201704036 shu

1, 8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-Promoted Stere-oselective Synthesis of Oxazolidin-2-(thi)one Derivatives

  • Corresponding author: Huang Nianyu, hny115@126.com
  • Received Date: 21 April 2017
    Revised Date: 10 August 2017
    Available Online: 8 December 2017

    Fund Project: the National Natural Science Foundation of China 21602123Project supported by the National Natural Science Foundation of China (No. 21602123), the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University (No. SDYC2016121)the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University SDYC2016121

Figures(4)

  • A series of multi-substituted oxazolidin-2-(thi)one derivatives were prepared via 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) promoted nucleophilic addition/cyclization from alkynyl alcohol and isocynate or thiocynate in high yields of 75%~95%. This concise and efficient approach provides a facial access to a library of biological (Z)-arylmethylene substituted oxazolidin-2-(thi)one derivatives with high stereo-selectivities.
  • 加载中
    1. [1]

      Zappia, G.; Menendez, P.; Monache, G. D.; Misiti, D.; Nevola, L.; Botta, B. Mini-Rev. Med. Chem. 2007, 7, 389.  doi: 10.2174/138955707780363783

    2. [2]

      (a) Phillips, O. A.; Sharaf, L. H. Expert Opin. Ther. Pat. 2016, 26, 591.
      (b) Jadhavar, P. S.; Vaja, M. D.; Dhameliya, T. M.; Chakraborti, A. K. Curr. Med. Chem. 2015, 22, 4379.

    3. [3]

      (a) Fujita, T.; Yamago, S. Chem.-Eur. J. 2015, 21, 18547.
      (b) Green, R.; Peed, J.; Taylor, J. E.; Blackburn, R. A.; Bull, S. D. Nat. Protoc. 2013, 8, 1890.

    4. [4]

      Ferreira, J.; Rees-Jones, S. C.; Ramaotsoa, V.; Msutu, A.; Hunter, R. Org. Biomol. Chem. 2016, 14, 1545.  doi: 10.1039/C5OB02560E

    5. [5]

      (a) Guo, B.; Fan, H.; Xin, Q.; Chu, W.; Wang, H.; Huang, Y.; Chen, X.; Yang, Y. J. Med. Chem. 2013, 56, 2642.
      (b) Friggeri, L.; Ballante, F.; Ragno, R.; Musmuca, I.; De Vita, D.; Manetti, F.; Biava, M.; Scipione, L.; Di Santo, R.; Costi, R.; Feroci, M.; Tortorella, S. J. Chem. Inf. Model. 2013, 53, 1463.

    6. [6]

      (a) Njiojob, C. N.; Bozell, J. J.; Long, B. K.; Elder, T.; Key, R. E.; Hartwig, W. T. Chem.-Eur. J. 2016, 22, 12506.
      (b) Mydock-McGrane, L.; Rath, N. P.; Covey, D. F. J. Org. Chem. 2014, 79, 5636.

    7. [7]

      Mendes, R. E.; Deshpande, L. M.; Jones, R. N. Drug Resist. Updates 2014, 17, 1.  doi: 10.1016/j.drup.2014.04.002

    8. [8]

      Chahine, E. B.; Sucher, A. J.; Knutsen, S. D. Consult. Pharm. 2015, 30, 386.  doi: 10.4140/TCP.n.2015.386

    9. [9]

      (a) Xu, J. X.; Zhao, J. W.; Jia, Z. B. Chin. Chem. Lett. 2011, 22, 1063.
      (b) Li, Y. W.; Liu, Y.; Jia, Y. C.; Yuan, J. Y. Chin. Chem. Lett. 2013, 24, 230.

    10. [10]

      (a) Sadeghzadeh, S. M. Appl. Organomet. Chem. 2016, 30, 835.
      (b) Bacchi, A.; Chiusoli, G. P.; Costa, M.; Gabriele, B.; Righi, C.; Salerno, G. Chem. Commun. 1997, 1209.
      (c) Song, Q. W.; Zhou, Z. H.; Wang, M. Y.; Zhang, K.; Liu, P.; Xun, J. Y.; He, L. N. ChemSusChem 2016, 9, 2054.
      (d) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem., Int. Ed. 2015, 54, 5399.
      (e) Hase, S.; Kayaki, Y.; Ikariya, T. ACS Catal. 2015, 5, 5135.

    11. [11]

      (a) Fujisaki, F.; Abe, N.; Sumoto, K. Heterocycles 2008, 75, 1681.
      (b) Steiner, B.; Langer, V.; Koóš, M. Carbohydr. Res. 2009, 344, 2079.

    12. [12]

      a) Li, S. Q.; Xiong, P.; Zhu, L.; Qian, X. Y.; Xu, H. C. Eur. J. Org. Chem. 2016, 2016, 3449.
      (b) Sekine, K.; Mawatari, T.; Yamada, T. Synlett 2015, 26, 2447.
      (c) Kim, W. S.; Yoon, E.; Jo, K. A.; Kang, E. J. Bull. Korean Chem. Soc. 2011, 32, 3158.

    13. [13]

      (a) Lu, X. F.; Yang, Z.; Huang, N. Y.; He, H. B.; Deng, W. Q.; Zou, K. Bioorg. Med. Chem. Lett. 2015, 25, 3726.
      (b) Wang, L.; Xie, Y. B.; Huang, N. Y.; Yan, J. Y.; Hu, W. M.; Liu, M. G.; Ding, M. W. ACS Catal. 2016, 6, 4010.
      (c) Li, R. K.; Yang, Q. L.; Liu, Y.; Li, D. W.; Huang, N. Y.; Liu, M. G. Chin. Chem. Lett. 2016, 27, 345.

    14. [14]

      Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450.  doi: 10.1016/j.tet.2013.09.087

    15. [15]

      Zhao, J.; Huang, H.; Qi, C.; Jiang, H. Eur. J. Org. Chem. 2012, 29, 5665.

    16. [16]

      (a) Ritter, S.; Horino, Y.; Lex, J.; Schmalz, H. G. Synlett 2006, 3309.
      (b) Ramesh, R.; Chandrasekaran, Y.; Megha, R.; Chandrasekaran, S. Tetrahedron 2007, 63, 9153.
      (c) Hu, M.; Song, R. J.; Li, J. H. Angew. Chem., Int. Ed. 2015, 54, 608.

    17. [17]

      (a) Doherty, S.; Knight, J. G.; Perry, D. O.; Ward, N. A.; Bittner, D. M.; McFarlane, W.; Probert, M. R. Organometallics 2016, 35, 1265.
      (b) Wang, F.; Wang, Y.; Cai, L.; Miao, Z.; Chen, R. Adv. Synth. Catal. 2008, 350, 2733.
      (c) Hu, Y.; Xin, X.; Wan, B. Tetrahedron Lett. 2014, 55, 32.

    18. [18]

      (a) Hashmi, A.; Stephen K.; Wang, T.; Shi, S.; Rudolph, M. J. Org. Chem. 2012, 77, 7761.
      (b) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8, 4027.
      (c) Jagtap, S. R.; Bhanage, B. M. J. Chem. Res. 2007, 6, 370.
      (d) Smissman, E. E.; Johnsen, R. H.; Carlson, A. W.; Aycock, B. F. J. Org. Chem. 1956, 78, 3395.
      (e) Cooper, M. A.; Lucas, M. A.; Taylor, J. M.; Ward, A. D.; Williamson, N. M. Synthesis 2001, 621.
      (f) Moran, W. J.; Rodríguez, A. Org. Biomol. Chem. 2012, 10, 8590.
      (g) Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Org. Lett. 2013, 20, 5222.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    5. [5]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Shuhong Xiang Lv Yang Yingsheng Xu Guoxin Cao Hongjian Zhou . Selective electrosorption of Cs(I) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

Metrics
  • PDF Downloads(1)
  • Abstract views(1102)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return