Citation: Wu Jiang, Li Jiawen, Li Hao, Zhu Chunyin. Visible Light Photoredox Catalysis Mediated Elementary Steps in Organometallic Reactions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2203-2210. doi: 10.6023/cjoc201704030 shu

Visible Light Photoredox Catalysis Mediated Elementary Steps in Organometallic Reactions

  • Corresponding author: Zhu Chunyin, zhucycn@gmail.com
  • Received Date: 18 April 2017
    Revised Date: 22 May 2017
    Available Online: 7 September 2017

    Fund Project: Project supported by the Qing Lan Project of Jiangsu Province

Figures(13)

  • Many organometallic reactions involve three elementary steps including oxidative addition, transamination, and reductive elimination. But sometimes very high barrier exists for this approach, leading to the failure of the reactions. The key development in recent reports is the implementation of visible-light photocatalysts as a means to induce the desired redox processes in a mild and selective manner. In this context, organometallic reactions mediated by photoredox catalysts could give rise to novel reactivity, thus this area has drawn much attention in organic chemistry community. In this review, prominent examples from the recent literatures are organized on the basis of the elementary transformation enabled by photoredox catalysis.
  • 加载中
    1. [1]

      (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
      (b) Hartwig, J. F. Organotransition Metal Chemistry:From Bonding to Catalysis, University Science Books, Herndon, VA, 2010.

    2. [2]

      For selected reviews on photoredox catalysis:
      (a) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
      (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
      (d) Angnes, R. A.; Li, Z.; Correia, C. R. D.; Hammond, G. B. Org. Biomol. Chem. 2015, 13, 9152.
      (e) Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
      (f) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
      (g) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
      (h) Lang, X.; Zhao, J.; Chen X., Chem. Soc. Rev. 2016, 45, 3026.
      (i) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent. Sci. 2016, 2, 293.
      (j) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (d) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
      (k) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
      (l) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
      (m) Fabry, D.-C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969.
      (n) Zhang, M.; Zhu, C.; Ye, L.-W. Synthesis 2017, 1150.
      (o) Zuo, X.; Wu, W.-L.; Su, W.-P. Acta Chim. Sinica 2015, 73, 1298(in Chinese).
      (左璇, 吴文亮, 苏伟平, 化学学报, 2015, 73, 1298.)
      (p) Guan, B.-C.; Xu, X.-L.; Wang, H.; Li, X.-N. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese).
      (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
      (q) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85(in Chinese).
      (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
      (r) Roh, G.-B.; Iqbal N.; Cho. E. J. Chin. J. Chem. 2016, 34, 459.

    3. [3]

      Halpern, J. Acc. Chem. Res. 1970, 3, 386.  doi: 10.1021/ar50035a004

    4. [4]

      Hill, R. H.; Puddephatt, R. J. J. Am. Chem. Soc. 1985, 107, 1218.  doi: 10.1021/ja00291a022

    5. [5]

      (a) Johnson, A.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1976, 1360.
      (b) Winston, M. S.; Wolf, W. J.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 7777.

    6. [6]

      (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
      (b) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517.

    7. [7]

      Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505.  doi: 10.1021/ja400311h

    8. [8]

      Hopkinson, M. N.; Sahoo, B.; Glorius, F. Adv. Synth. Catal. 2014, 356, 2794.  doi: 10.1002/adsc.201400580

    9. [9]

      Xia, Z.; Khaled, O.; Mouriès-Mansuy, V.; Ollivier, C.; Fensterbank, L. J. Org. Chem. 2016, 81, 7182.  doi: 10.1021/acs.joc.6b01060

    10. [10]

      Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844.  doi: 10.1021/ja500716j

    11. [11]

      Um, J.; Yun, H.; Shin, S. Org. Lett. 2016, 18, 484.  doi: 10.1021/acs.orglett.5b03531

    12. [12]

      Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Chem.-Eur. J. 2016, 22, 5909.  doi: 10.1002/chem.201600710

    13. [13]

      Alcaide, B.; Almendros, P.; Busto, E.; Luna, A. Adv. Synth. Catal. 2016, 358, 1526.  doi: 10.1002/adsc.201600158

    14. [14]

      He, Y.; Wu, H.; Toste, F. D. Chem. Sci. 2015, 6, 1194.  doi: 10.1039/C4SC03092C

    15. [15]

      Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89.  doi: 10.1039/C5SC02583D

    16. [16]

      Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85.  doi: 10.1039/C5SC03025K

    17. [17]

      Cornilleau, T.; Hermange, P.; Fouquet, E. Chem. Commun. 2016, 52, 10040.  doi: 10.1039/C6CC04239B

    18. [18]

      Gauchot, V.; Lee, A.-L. Chem. Commun. 2016, 52, 10163.  doi: 10.1039/C6CC05078F

    19. [19]

      (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
      (b) Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.
      (c) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624.

    20. [20]

      (a) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.
      (b) Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.

    21. [21]

      Xuan, J.; Zeng, T.; Chen, J.; Lu, L.; Xiao, W. Chem.-Eur. J. 2015, 21, 4962.  doi: 10.1002/chem.201500227

    22. [22]

      (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
      (b) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254.
      (c) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(22)
  • Abstract views(2857)
  • HTML views(379)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return