Citation: Hu Wei, Long Yaqiu. Cross-Dehydrogenative Coupling Reactions Applied in the Construction of Privileged Heterocycles[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2850-2858. doi: 10.6023/cjoc201703033 shu

Cross-Dehydrogenative Coupling Reactions Applied in the Construction of Privileged Heterocycles

  • Corresponding author: Long Yaqiu, yqlong@simm.ac.cn
  • Received Date: 20 March 2017
    Revised Date: 14 June 2017
    Available Online: 7 November 2017

    Fund Project: the National Natural Science Foundation of China 81761128022the National Natural Science Foundation of China 81325020Project supported by the National Natural Science Foundation of China (Nos. 81325020, 81761128022)

Figures(13)

  • The reactions in which a new C-C bond is formed via a direct coupling of two C-H bonds are termed as cross dehydrogenative coupling (CDC). The coupling reactions would not need the pre-activation of the inert C-H bonds by any func-tional groups, featured with straightforwardness, atom-and step-economy and environmently benigness. Heterocycles are widely found in bioactive natural products and pharmaceuticals, designated as drug-like privileged scaffolds since they endowed diverse pharmacological effects. Preparation of these privileged structures by means of CDC confers distinctive advantages and enhances the discovery of lead compounds in medicinal chemistry. The application of CDC reactions in the synthesis of the heterocycles of pharmaceutical interest in recent years is summarized, focused on the construction of privileged scaffolds, such as indole, pyrrole, quinazoline, quinoxaline and the middle size and poly ring systems.
  • 加载中
    1. [1]

    2. [2]

      (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (b) Li, G.; Nakamura, H. Angew. Chem., Int. Ed. 2016, 55, 6758.

    3. [3]

      (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.
      (b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56.
      (c) Zhang, Y.; Li, C.-J. J. Am. Chem. Soc 2006, 128, 4242.

    4. [4]

      (a) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 6174.
      (b) Han, W.; Mayer, P.; Ofial, A. R. Angew. Chem., Int. Ed. 2011, 50, 2178.
      (c) Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 3267.
      (d) Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.
      (e) Zhou, L.; Xu, B.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 9092.

    5. [5]

      Gensch, T.; Klauck, F. J. R.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 11287.  doi: 10.1002/anie.201605193

    6. [6]

      Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822.  doi: 10.1021/ol500864r

    7. [7]

      Hu, W.; Lin, J.-P.; Song, L.-R.; Long, Y.-Q. Org. Lett. 2015, 17, 1268.  doi: 10.1021/acs.orglett.5b00248

    8. [8]

      Zhao, M.; Wang, F.; Li, X. Org. Lett. 2012, 14, 1412.  doi: 10.1021/ol300147t

    9. [9]

      Vanjari, R.; Guntreddi, T.; Kumar, S.; Singh, K. N. Chem. Commun. 2015, 51, 366.  doi: 10.1039/C4CC08210A

    10. [10]

      (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
      (b) Zeng, L.-F.; Wang, Y.; Kazemi, R.; Xu, S.; Xu, Z.-L.; Sanchez, T. W.; Yang, L.-M.; Debnath, B.; Odde, S.; Xie, H.; Zheng, Y.-T.; Ding, J.; Neamati, N.; Long, Y.-Q. J. Med. Chem 2012, 55, 9492.
      (c) Lam, T.; Hilgers, M. T.; Cunningham, M. L.; Kwan, B. P.; Nelson, K. J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K. J.; Finn, J. J. Med. Chem. 2014, 57, 651.

    11. [11]

      Li, C.-J. Acc. Chem. Res. 2009, 42, 335.  doi: 10.1021/ar800164n

    12. [12]

      Xue, D.; Long, Y.-Q. J. Org. Chem. 2014, 79, 4727.  doi: 10.1021/jo5005179

    13. [13]

      Zhu, C.; Yang, B.; Qiu, Y.; Backvall, J. E. Angew. Chem., Int. Ed. 2016, 55, 14405.  doi: 10.1002/anie.v55.46

    14. [14]

      (a) Cheng, Y.; Shen, J.; Peng, R.-Z.; Wang, G.-F.; Zuo, J.-P.; Long, Y.-Q. Bioorg. Med. Chem. Lett. 2016, 26, 2900.
      (b) Zhi, Y.; Gao, L.-X.; Jin, Y.; Tang, C.-L.; Li, J.-Y.; Li, J.; Long, Y.-Q. Bioorg. Med. Chem. 2014, 22, 3670.

    15. [15]

      (a) Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 9220.
      (b) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.
      (c) Gao, S.; Wu, Z.; Fang, X.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3906.
      (d) Chen, J.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 3951.
      (e) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 2875.

    16. [16]

      Würtz, S.; Rakshit, S.; Neumann, J. J.; Dr ge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 120, 7340.  doi: 10.1002/ange.v120:38

    17. [17]

      Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.  doi: 10.1002/anie.v48:25

    18. [18]

      Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.  doi: 10.1021/ol900576a

    19. [19]

      Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2010, 46, 2823.  doi: 10.1039/b923971e

    20. [20]

      Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264.  doi: 10.1002/anie.201405478

    21. [21]

      Wei, Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098.  doi: 10.1021/ja3030824

    22. [22]

      Jiang, L.; Jin, W.; Hu, W. ACS Catal. 2016, 6, 6146.  doi: 10.1021/acscatal.6b01946

    23. [23]

      Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J.-I. J. Med. Chem. 2004, 47, 3693.  doi: 10.1021/jm030394f

    24. [24]

      Wu, C.-H.; Hung, M.-S.; Song, J.-S.; Yeh, T.-K.; Chou, M.-C.; Chu, C.-M.; Jan, J.-J.; Hsieh, M.-T.; Tseng, S.-L.; Chang, C.-P.; Hsieh, W.-P.; Lin, Y.; Yeh, Y.-N.; Chung, W.-L.; Kuo, C.-W.; Lin, C.-Y.; Shy, H.-S.; Chao, Y.-S.; Shia, K.-S. J. Med. Chem. 2009, 52, 4496.  doi: 10.1021/jm900471u

    25. [25]

      Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.  doi: 10.1021/cr2000459

    26. [26]

      Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.  doi: 10.1002/anie.v49:42

    27. [27]

      (a) Zhang, G.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2013, 52, 2559.
      (b) Wu, X.; Wang, M.; Zhang, G.; Zhao, Y.; Wang, J.; Ge, H. Chem. Sci. 2015, 6, 5882.

    28. [28]

      Murarka, S.; Studer, A. Org. Lett. 2011, 13, 2746.  doi: 10.1021/ol200849k

    29. [29]

      Ye, J. T.; Ma, S. M. Acc. Chem. Res. 2014, 47, 989.  doi: 10.1021/ar4002069

    30. [30]

      Xiao, T.; Li, L.; Lin, G.; Mao, Z.-W.; Zhou, L. Org. Lett. 2014, 16, 4232.  doi: 10.1021/ol501933h

    31. [31]

      Zhang, Z.; Dai, Z.; Ma, X.; Liu, Y.; Ma, X.; Li, W.; Ma, C. Org. Chem. Front. 2016, 3, 799.  doi: 10.1039/C6QO00040A

    32. [32]

      Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.  doi: 10.1021/ol201563r

    33. [33]

      Zhang, Z.; Xie, C.; Tan, X.; Song, G.; Wen, L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.  doi: 10.1039/C5QO00124B

    34. [34]

      Sun, M.; Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 8155.  doi: 10.1021/jo400979h

    35. [35]

      (a) Dhiman, S.; Mishra, U. K.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 7737.
      (b) Garkhedkar, A. M.; Senadi, G. C.; Wang, J. J. Org. Lett. 2017, 19, 488.
      (c) Cheng, J.; Li, W. P.; Duan, Y. Q.; Cheng, Y. X.; Yu, S. Y.; Zhu, C. J. Org. Lett. 2017, 19, 214.

    36. [36]

      Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.  doi: 10.1002/anie.201409694

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    7. [7]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    10. [10]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    13. [13]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    14. [14]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    18. [18]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(9)
  • Abstract views(2851)
  • HTML views(347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return