Citation: Zhang Yiwei, Chen Yilin, Fang Xiaolong, Yuan Youzhu, Zhu Hongping. Advances for the Ruthenium Complexes-Based Homogeneous Catalytic Hydrogenation of Oxalates to Ethylene Glycol[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2275-2286. doi: 10.6023/cjoc201703021 shu

Advances for the Ruthenium Complexes-Based Homogeneous Catalytic Hydrogenation of Oxalates to Ethylene Glycol

  • Corresponding author: Yuan Youzhu, yzyuan@xmu.edu.cn Zhu Hongping, hpzhu@xmu.edu.cn
  • Received Date: 10 March 2017
    Revised Date: 2 May 2017
    Available Online: 17 September 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21473142, 91545115, 21473145) and the Innovative Research Team of China (Nos. IRT_14R31, J1310024)Innovative Research Team of China IRT_14R31National Natural Science Foundation of China 21473145Innovative Research Team of China J1310024National Natural Science Foundation of China 91545115National Natural Science Foundation of China 21473142

Figures(9)

  • Hydrogenation of oxalates is one of the important organic reactions, which has an ultimate use for the industrial production of ethylene glycol. The studies on the ruthenium complexes-based homogeneous catalytic reaction systems are herein summarized. With the focus on the catalytic reaction systems, the important factors with significant influences on the oxalate transformation efficiency as well as the product selectivity are discussed, including temperature, H2 pressure, catalyst concentration, reaction duration, additives, and so on. The catalytic reaction mechanisms are also discussed in detail, where the mechanism for the H2-heterolysis promoted under the metal-ligand cooperation for the oxalate hydrogenation to ethylene glycol is enhanced. This study would be useful for designing the new catalyst applicable in industry.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Gaylord, N. G. J. Chem. Educ. 1957, 34, 367.
      (b) Hudlicky, M. Reductions in Organic Chemistry, ACS, Washington, DC, 1996.

    4. [4]

      (a) Modler, R. F.; Gubler, R.; Inoguchi, Y. Detergent Alchols, CEH Marketing Research Report, 2004.
      (b) Hong, W. S. Natural Detergent Alcohols by a Vapour Phase Ester Hydrogenation Process, PPP Review 93-2-1, 2004.
      (c) Cant, N. W.; Trimm, D. L.; Turek, T. Catal. Rev. Sci. Eng. 1994, 36, 645.

    5. [5]

      March, J. Advanced Organic Chemistry:Reactions Mechanisms and Structure, 4th ed., Wiley-Interscience, New York, 1992, p. 1213.

    6. [6]

      (a) Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses, Academic Press, New York, 1979.
      (b) de Vries, J. G.; Elsevier, C. J. Handbook of Heterogeneous Hydrogenation for Organic Synthesis, Weily-VCH, Weinheim, 2007.

    7. [7]

    8. [8]

      (a) Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. WO 2003093208, 2003[Chem. Abstr. 2003, 139, 366612].
      (b) Pope, S. J. A.; Champness, N. R.; Reid, G. J. Chem. Soc., Dalton Trans. 1997, 1639.

    9. [9]

      Seyden-Penne, J. Reductions by the Allumino-and Borohydride in Organic Synthesis, 2nd ed.; Wiley-VCH, New York, 1997.

    10. [10]

      (a) Turek, T.; Trimm, D.; Cant, N. Catal. Rev. -Sci. Eng. 1994, 36, 645.
      (b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today 2000, 63, 87.

    11. [11]

      Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.  doi: 10.1039/C5CS00038F

    12. [12]

      (a) Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.
      (b) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.
      (c) De Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
      (d) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414.

    13. [13]

      Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1984, 22, 353.  doi: 10.1016/0304-5102(84)80075-9

    14. [14]

      (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1985, 29, 269.
      (b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Organomet. Chem. 1986, 299, 233.
      (c) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1988, 44, 347.

    15. [15]

      (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1991, 64, 257.
      (b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F.; Ianelli, S.; Nardelli, M. J. Organomet. Chem. 1995, 498, 177.

    16. [16]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.

    17. [17]

      Kara, Y.; Wada, K. Chem. Lett. 1991, 20, 553.  doi: 10.1246/cl.1991.553

    18. [18]

      van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A:Chem. 2003, 206, 185.  doi: 10.1016/S1381-1169(03)00427-8

    19. [19]

      Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tooze, R. P. Chem. Commun. 2006, 2289.

    20. [20]

      Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. Coord. Chem. Rev. 1999, 193~195, 73.

    21. [21]

      Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A:Chem. 2011, 346, 70.  doi: 10.1016/j.molcata.2011.06.010

    22. [22]

      Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5, 3228.  doi: 10.1002/cctc.201300209

    23. [23]

      Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.  doi: 10.1021/op200234j

    24. [24]

      Eveline, J.; Jongbloed, L. S.; Tromp, D. S.; Martin, L.; Bas, D. B.; Elsevier, C. J. ChemSusChem 2013, 6, 1737.  doi: 10.1002/cssc.201300363

    25. [25]

      (a) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
      (b) Pàmies, O.; Bäckvall, J. E. Chem. Eur. J. 2001, 7, 5052.
      (c) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Vergman, R. G. Acc. Chem. Res. 2002, 35, 44.
      (d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201.

    26. [26]

      (a) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466.
      (b) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40.
      (c) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
      (d) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.

    27. [27]

      (a) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
      (b) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2001, 123, 7473.
      (c) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870.
      (d) Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Adv. Synth. Catal. 2005, 347, 571.

    28. [28]

      (a) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.
      (b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130, 11979.
      (c) Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2011, 133, 9666.
      (d) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.

    29. [29]

      Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.  doi: 10.1002/(ISSN)1521-3773

    30. [30]

      (a) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
      (b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744.

    31. [31]

      Li, W.; Xie, J.; Yuan, M.; Zhou, Q. Green Chem. 2014, 16, 4081.  doi: 10.1039/C4GC00835A

    32. [32]

      Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.  doi: 10.1002/(ISSN)1521-3773

    33. [33]

      (a) Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Chem. Commun. 2011, 47, 8349.
      (b) Yang, X. ACS Catal. 2012, 2, 964.

    34. [34]

      (a) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
      (b) Wang, Y.; Duan, X.; Zheng, J.; Lin, H.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. Catal. Sci. Technol. 2012, 2, 1637.
      (c) Huang, Y.; Ariga, H.; Zheng, X.; Duan, X.; Takakusagi, S.; Asakura, K.; Yuan, Y. J. Catal. 2013, 307, 74.
      (d) Zheng, J.; Lin, H.; Wang, Y.; Zheng, X.; Duan, X.; Yuan, Y. J. Catal. 2013, 297, 110.
      (e) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.
      (f) Li, M.; Ye, L.; Zheng, J.; Fang, H.; Kroner, A.; Yuan, Y.; Tsang, S. C. E. Chem. Commun. 2016, 52, 2569.
      (g) Li, M.; Zheng, J.; Qu, J.; Liao, F.; Raine, E.; Kuo, W. C. H.; Su, S. S.; Po, P.; Yuan, Y.; Tsang, S. C. E. Sci. Rep. 2016, 6, 20527.
      (h) Zheng, J.; Duan, X.; Lin, H.; Gu, Z.; Fang, H.; Li, J.; Yuan, Y. Nanoscale 2016, 8, 5959.

    35. [35]

      Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. RSC Adv. 2016, 6, 45512.  doi: 10.1039/C6RA00320F

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    18. [18]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(6)
  • Abstract views(2426)
  • HTML views(363)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return