Citation: Wu Yuqin, Yu Liangyun, Zhang Qi, Li Lidong. Synthesis of Dihydrophenanthridines by Palladium-Catalyzed[2+2+2] Cyclization Reactions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2336-2342. doi: 10.6023/cjoc201703004 shu

Synthesis of Dihydrophenanthridines by Palladium-Catalyzed[2+2+2] Cyclization Reactions

  • Corresponding author: Li Lidong, ld-l@163.com
  • Received Date: 2 March 2017
    Revised Date: 30 March 2017
    Available Online: 10 September 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21272005)National Natural Science Foundation of China 21272005

Figures(3)

  • Phenanthridines are important core structures found in a variety of natural products and other biologically important molecules with a wide range of biological activities and applications, including antibacterial and anticancer agents. A practical and efficient domino method for the preparation of dihydrophenanthridines from diynes and aryl halides is developed via palladium-catalyzed[2+2+2] cycloaddition reactions. All new products were fully characterized by IR, 1H NMR, 13C NMR and high-resolution mass spectrometry. The molecular structure of 1-(7, 12-diphenyl-5-tosyl-5, 6-dihydrobenzo[j]-phenanthridin-10-yl)ethan-1-one (3b) was confirmed by using single-crystal X-ray analyses.
  • 加载中
    1. [1]

      (a) Simeon, S.; Rios, J. L.; Villar, A. Pharmazie 1989, 44, 593.
      (b) Ishikawa, T.; Ishii, H. Heterocycles 1999, 50, 627.

    2. [2]

      (a) Phillips, S. D.; Castle, R. N. J. Heterocycl. Chem. 1981, 18, 223.
      (b) Treus, M.; Estevez, J. C.; Castedo, L.; Esteves, R. J. Tetrahedron Lett. 2002, 43, 532.

    3. [3]

      (a) Bernardo, P. H.; Wan, K.-F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
      (b) Janin, Y. L.; Croisy, A.; Riou, J.-F.; Bisagni, E. J. Med. Chem. 1993, 36, 3686.
      (c) Kock, I.; Heber, D.; Weide, M.; Wolschendorf, U.; Clement, B. J. Med. Chem. 2005, 48, 2772.
      (d) Treus, M.; Estevez, J. C.; Castedo, L.; Esteves, R. J. Tetrahedron Lett. 2002, 43, 5323.
      (e) Nakanishi, T.; Suzuki, M. Org. Lett. 1999, 1, 985.

    4. [4]

      Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, R.; Mathys, V.; Verschaeve, L.; Huygen, K.; Kimpe, N. D. J. Med. Chem. 2014, 57, 2895.  doi: 10.1021/jm401735w

    5. [5]

      Czapar, A. E.; Zheng, Y.-R.; Riddell, I. A.; Shukla, S.; Awuah, S. G.; Lippard, S. J.; Steinmetz, N. F. ACS Nano 2016, 10, 4119.  doi: 10.1021/acsnano.5b07360

    6. [6]

      Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055.  doi: 10.1021/jacs.5b13462

    7. [7]

    8. [8]

      (a) Clement, B.; Weide, M.; Wolschendorf, U.; Kock, I. Angew. Chem., Int. Ed. 2005, 44, 635.
      (b) Candito, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 6713.
      (c) Guo, C.; Huang, K.; Wang, B.; Xie, L.; Xu, X. RSC Adv. 2013, 3, 17271.
      (d) Gu, J.-W.; Zhang, X. Org. Lett. 2015, 17, 5384.

    9. [9]

      (a) Deb, I.; Yoshikai, N. Org. Lett. 2013, 15, 4254.
      (b) Tu, H.-Y.; Liu, Y.-R.; Chu, J.-J.; Hu, B.-L.; Zhang, X.-G. J. Org. Chem. 2014, 79, 9907.
      (c) Wang, G.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron Lett. 2014, 55, 5338.
      (d) Nie, Z.; Ding, Q.; Peng, Y. Tetrahedron, 2016, 72, 8350.

    10. [10]

      Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.  doi: 10.1021/ol101490n

    11. [11]

      (a) Fang, H.; Zhao, J.; Ni, S.; Mei, H.; Han, J.; Pan, Y. J. Org. Chem. 2015, 80, 3151.
      (b) Lu, S.; Gong, Y.; Zhou, D. J. Org. Chem. 2015, 80, 9336.
      (c) Zhou, Y.; Wu, C.; Dong, X.; Qu, J. J. Org. Chem. 2016, 81, 5202.
      (d) Xiao, P.; Jian, Rong.; Ni, C.; Guo, J.; Li, X.; Chen, D.; Hu, J. Org. Lett. 2016, 18, 5912.

    12. [12]

      (a) Linsenmeier, A. M.; Williams, C. M.; Bräse, S. J. Org. Chem. 2011, 76, 9127.
      (b) Zhang, Z.; Tang, X.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 4401.
      (c) Cheng, P.; Qing, Z.; Liu, S.; Liu, W.; Xie, H.; Zeng, J. Tetrahedron Lett. 2014, 55, 6647.

    13. [13]

      (a) Read, M. L.; Gundersen, L.-L. J. Org. Chem. 2013, 78, 1311.
      (b) Xu, Y.; Chen, Y.; Li, W.; Xie, Q.; Shao, L. J. Org. Chem. 2016, 81, 8426.

    14. [14]

      Mehta, B. K.; Yanagisawa, K.; Shiro, M.; Kotsuki, H. Org. Lett. 2003, 5, 1605.  doi: 10.1021/ol0300120

    15. [15]

      Tummatorn, J.; Krajangsri, S.; Norseeda, K.; Thongsornkleeb, C.; Ruchirawat, S. Org. Biomol. Chem. 2014, 45, 5077.

    16. [16]

      (a) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
      (b) Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J.-C. Chem. Soc. Rev. 2012, 41, 3929.

    17. [17]

    18. [18]

      Sripada, L.; Teske, A. J.; Deiters, A. Org. Biomol. Chem. 2008, 6, 263.  doi: 10.1039/B716519F

    19. [19]

      Li, Y.; Zhu, J.; Zhang, L.; Wu, Y.; Gong, Y. Chem. Eur. J. 2013, 19, 8294.  doi: 10.1002/chem.v19.25

    20. [20]

      (a) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403.
      (b) Gandeepan, P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc. 2010, 132, 8569.

    21. [21]

      (a) Hu, Y.; Ren, D.; Zhang, L.; Lin, X.; Wan J. Eur. J. Org. Chem. 2010, 23, 4454.
      (b) Hu, Y.; Yao, H.; Sun, Y.; Wan, J.; Lin, X, ; Zhu, T. Chem. Eur. J. 2010, 16, 7635.

    22. [22]

      (a) Garca-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066.
      (b) Garca-Cuadrado, D.; Mendoza, P. D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880.

  • 加载中
    1. [1]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    4. [4]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

Metrics
  • PDF Downloads(3)
  • Abstract views(2106)
  • HTML views(944)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return