Citation: Liu Yunyun, Xiong Jin, Wei Li. Recent Advances in the C(sp2)-S Bond Formation Reactions by Transition Metal-Free C(sp2)-H Functionalization[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1667-1680. doi: 10.6023/cjoc201702009 shu

Recent Advances in the C(sp2)-S Bond Formation Reactions by Transition Metal-Free C(sp2)-H Functionalization

  • Corresponding author: Liu Yunyun, chemliuyunyun@jxnu.edu.cn
  • Received Date: 9 February 2017
    Revised Date: 16 March 2017
    Available Online: 1 July 2017

    Fund Project: the National Natural Science Foundation of China 21562024Project supported by the National Natural Science Foundation of China (No. 21562024)

Figures(31)

  • Aryl/vinyl thioethers containing C(sp2)-S bonds are prevalent in biologically relevant molecules and compounds with other potential applications. Around the past decade, rapid progress has taken place in the research area of C(sp2)-S construction, and a large number of efficient new catalytic systems as well as structurally versatile substrates have been identified for such reactions, which significantly enriched the content of the synthetic methodologies on C(sp2)-S bond formation. This review introduces mainly the research advances on transition metal-free C(sp2)-S bond forming reaction by means of C(sp2)-H bond functionalization over the period of 2001~2016.
  • 加载中
    1. [1]

      (a) Felix, A. M.; Unowsky, J.; Bontempo, J.; Fryer, R. I. J. Med. Chem. 1968, 11, 929.
      (b) Gangjee, A.; Zeng, Y.; Talreja, T.; McGuire, J. J.; Kisliuk, R. L.; Queener, S. F. J. Med. Chem. 2007, 50, 3046.
      (c) Pedras, M. S. C.; Zheng, Q.-A.; Strelkov, S. J. Agric. Food Chem. 2008, 56, 9949.
      (d) Halim, M.; Yee, D. J.; Sames, D. J. Am. Chem. Soc. 2008, 130, 14123.
      (e) Wilson, A. J.; Kerns, J. K.; Callahan, J. F.; Moody, C. J. J. Med. Chem. 2013, 56, 7463.

    2. [2]

      (a) De Martino, G.; Edler, M. C.; La Regina, G.; Coluccia, A.; Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med.Chem. 2006, 49, 947.
      (b) Ragno, R.; Coluccia, A.; La Regina, G.; De Martino, G.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.
      (c) Armer, R. E.; Wynne, G. M. WO 2008012511, 2008 [Chem. Abstr. 2008, 148, 183423].

    3. [3]

      For selected examples, see (a) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205.
      (b) Li, G. Angew. Chem., Int. Ed. 2001, 40, 1513.
      (c) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
      (d) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583.
      (e) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214.
      (f) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (g) Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558.
      (h) Wang, X.; Yang, F.; Xue, Z. Chin. J. Org. Chem. 2015, 35, 29.
      (i) Zhao, F.; Jia, X.; Wang, D.; Fei, C.; Wu, C.; Wang, J.; Liu, H. Chin. J. Org. Chem. 2017, 37, 284.

    4. [4]

    5. [5]

      Prasad, C. D.; Balkrishna, S. J.; Kumar, A.; Bhakuni, B. S.; Shrimali, S. B.; Kumar, S. J. Org. Chem. 2013, 78, 1434.  doi: 10.1021/jo302480j

    6. [6]

      Tian, H.; Zhu, C.; Yang, H.; Fu, H. Chem. Commun. 2014, 50, 8875.  doi: 10.1039/C4CC03600J

    7. [7]

      Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898.  doi: 10.1021/acs.orglett.5b01889

    8. [8]

      Yang, D.; Yan, K.; Wei, W.; Zhao, J.; Zhang, M.; Sheng, X.; Li, G.; Lu, S.; Wang, H. J. Org. Chem. 2015, 80, 6083.  doi: 10.1021/acs.joc.5b00540

    9. [9]

      Yan, K.; Yang, D.; Sun, P.; Wei, W.; Liu, Y.; Li, G.; Lu, S.; Wang, H. Tetrahedron Lett. 2015, 56, 4792.  doi: 10.1016/j.tetlet.2015.06.057

    10. [10]

      Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.  doi: 10.1039/C5GC00403A

    11. [11]

      Blanco, G. A.; Baumgartner, M. T. Tetrahedron Lett. 2011, 52, 7061.  doi: 10.1016/j.tetlet.2011.10.053

    12. [12]

      Varun, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 9655.  doi: 10.1021/jo501793q

    13. [13]

      Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem.2014, 79, 10605.  doi: 10.1021/jo501778h

    14. [14]

      Zhao, X.; Li, T.; Zhang, L.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.  doi: 10.1039/C5OB02193F

    15. [15]

      Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. RSC Adv. 2015, 5, 108030.  doi: 10.1039/C5RA24351C

    16. [16]

      Wang, D.; Guo, S.; Zhang, R.; Lin, S.; Yan, Z. RSC Adv. 2016, 6, 54377.  doi: 10.1039/C6RA02302A

    17. [17]

      Zhao, X.; Deng, Z.; Wei, A.; Li, B.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304.  doi: 10.1039/C6OB01006G

    18. [18]

      Matsugi, M.; Gotanda, K.; Murata, K.; Kita, Y. Chem. Commun. 1997, 1387.

    19. [19]

      Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anikumar, G.; Matsumoto, K.; Kita, Y. J. Org. Chem. 2001, 66, 2434.  doi: 10.1021/jo001710q

    20. [20]

      Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Seaton, K. Org. Lett. 2004, 6, 819.  doi: 10.1021/ol049956v

    21. [21]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.  doi: 10.1016/j.tetlet.2007.07.130

    22. [22]

      Liu, Y.; Zhang, Y.; Hu, C.; Wan, J-P.; Wen, C. RSC Adv. 2014, 4, 35528.  doi: 10.1039/C4RA05206D

    23. [23]

      He, Y.; Liu, S.; Wen. P.; Tian, W.; Ren, X.; Zhou, Q.; Ma, H.; Huang, G. ChemistrySelect 2016, 1, 1567.  doi: 10.1002/slct.201600257

    24. [24]

      Saima; Equbal, D.; Lavekar, A. G.; Sinha, A. K. Org. Biomol. Chem. 2016, 14, 6111.  doi: 10.1039/C6OB00930A

    25. [25]

      Zhang, X.; Zhou, X.; Xiao, H.; Li, X. RSC Adv. 2013, 3, 22280.  doi: 10.1039/c3ra44484h

    26. [26]

      Zhou, X.; L, X. RSC Adv. 2014, 4, 1241.

    27. [27]

      Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.  doi: 10.1039/c2gc35337g

    28. [28]

      Huang, D.; Chen, J.; Dan, W.; Ding, J.; Liu, M.; Wu, H. Adv. Synth. Catal. 2012, 354, 2123.  doi: 10.1002/adsc.v354.11/12

    29. [29]

      Sang, P.; Chen, Z.; Zou, J.; Zhang, Y. Green Chem. 2013, 15, 2096.  doi: 10.1039/c3gc40724a

    30. [30]

      Prasad, D. C.; Kumar, S.; Sattar, M.; Amit, A.; Kumar, S. Org. Biomol. Chem. 2013, 11, 8036.  doi: 10.1039/c3ob41601a

    31. [31]

      Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125.  doi: 10.1021/jo5000779

    32. [32]

      Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364.  doi: 10.1002/adsc.201300773

    33. [33]

      Katrun, P.; Hongthong, S.; Hlkhlai, S.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Jaipetch, T.; Kuhakarn, C. RSC Adv. 2014, 4, 18933.  doi: 10.1039/c4ra02607a

    34. [34]

      Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC Adv. 2014, 4, 49165.  doi: 10.1039/C4RA08669D

    35. [35]

      Kumaraswamy, G.; Raju, R.; Narayanarao, V. RSC Adv. 2015, 5, 22718.  doi: 10.1039/C5RA00646E

    36. [36]

      Zhao, X.; Lu, X.; Wei, A.; Jia. X.; Chen, J.; Lu, K. Tetrahedron Lett. 2016, 57, 5330.  doi: 10.1016/j.tetlet.2016.10.053

    37. [37]

      Yang, F-L.; Tian, S-K. Angew. Chem., Int. Ed. 2013, 52, 4929.  doi: 10.1002/anie.v52.18

    38. [38]

      Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 2609.  doi: 10.1039/C6GC00313C

    39. [39]

      Rahaman, R.; Devi, N.; Sarma, K.; Barman, P. RSC Adv. 2016, 6, 10873.  doi: 10.1039/C5RA24851E

    40. [40]

      Liu, C-R.; Ding, L-H. Org. Biomol. Chem. 2015, 13, 2251.  doi: 10.1039/C4OB02575J

    41. [41]

      Rahaman, R.; Devi, N.; Bhagawati, J. R.; Barman, P. RSC Adv. 2016, 6, 18929.  doi: 10.1039/C5RA26425A

    42. [42]

      Miao, T.; Li, P.; Zhang, Y.; Wang, L. Org. Lett. 2015, 17, 832.  doi: 10.1021/ol503659t

    43. [43]

      Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565.  doi: 10.1021/ol052615c

    44. [44]

      Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Chem. Commun. 2015, 51, 13898.  doi: 10.1039/C5CC05421D

    45. [45]

      Qi, H.; Zhang, T.; Wan, K.; Luo, M. J. Org. Chem. 2016, 81, 4262.  doi: 10.1021/acs.joc.6b00636

    46. [46]

      Li, J.; Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Biomol. Chem. 2016, 14, 9384.  doi: 10.1039/C6OB01528J

    47. [47]

      Zhao, X.; Zhang, L.; Lu, X.; Li, T.; Lu, K. J. Org. Chem. 2015, 80, 2918.  doi: 10.1021/acs.joc.5b00146

    48. [48]

      Zhao, X.; Lu, X.; Wei, A.; Jia, X.; Chen, J.; Lu, K. Tetrahedron Lett. 2016, 57, 5330.  doi: 10.1016/j.tetlet.2016.10.053

    49. [49]

      Zhao, X.; Zhang, L.; Li. T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121.  doi: 10.1039/C4CC05237D

    50. [50]

      Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv. 2016, 6, 51830.  doi: 10.1039/C6RA09739A

    51. [51]

      Zhou, L-H.; Reball, J.; Mottweiler, J.; Bolm, C. Chem. Commun. 2012, 48, 11307.  doi: 10.1039/c2cc36711d

    52. [52]

      Rafique, J.; Saba, S.; Rosário, A. R.; Zeni, G.; Braga, A. L. RSC Adv. 2014, 4, 51648.  doi: 10.1039/C4RA10490K

    53. [53]

      Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Chem. Commun. 2011, 47, 9188.  doi: 10.1039/c1cc13633j

    54. [54]

      Ravi, C.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2014, 16, 2978.  doi: 10.1021/ol501117z

    55. [55]

      Hiebel, M-A.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.  doi: 10.1039/C4GC01462F

    56. [56]

      Gao, Z.; Zhu, X.; Zhang, R. RSC Adv. 2014, 4, 19891.  doi: 10.1039/C4RA01240B

    57. [57]

      Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314.  doi: 10.1039/C5OB00033E

    58. [58]

      Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.  doi: 10.1021/acs.joc.6b01487

    59. [59]

      Huang, X.; Wang, S.; Li, B.; Wang, X.; Ge. Z.; Li, R. RSC Adv. 2015, 5, 22654.  doi: 10.1039/C4RA17237J

    60. [60]

      Rafique, J.; Saba, S.; Rosário, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 11854.  doi: 10.1002/chem.201600800

    61. [61]

      Wang, D.; Zhang, R.; Lin, S.; Deng, R.; Yan, Z. Chin. J. Org. Chem. 2016, 36, 2757.  doi: 10.6023/cjoc201604056

    62. [62]

      Liu, W.; Wang, S.; Chen, Y.; Huang, Y.; Li, Z.; Wang, A. Phosphorus Sulfur, Silicon Relat. Elem. 2016, 191, 689.  doi: 10.1080/10426507.2015.1073278

    63. [63]

      Yang, D.; Sun, P.; Wei, W.; Meng, L.; He, L.; Fang, B.; Jiang, W. Org. Chem. Front. 2016, 3, 1457.  doi: 10.1039/C6QO00407E

    64. [64]

      Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 8275.  doi: 10.1021/acs.joc.5b01369

    65. [65]

      Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.  doi: 10.1021/acs.joc.5b01637

    66. [66]

      Jiang, L.; Yi, W.; Liu, Q. Adv. Synth. Catal. 2016, 358, 3700.  doi: 10.1002/adsc.201600651

    67. [67]

      Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.-J. J. Org. Chem. 2015, 80, 8217.  doi: 10.1021/acs.joc.5b01280

    68. [68]

      Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2015, 80, 3321.  doi: 10.1021/jo502912m

    69. [69]

      Kundu, S.; Basu, B. RSC Adv. 2015, 5, 50178.  doi: 10.1039/C5RA04983K

    70. [70]

      Zheng, G.; Ma, X.; Liu, B.; Dong, Y.; Wang, M. Adv. Synth. Catal. 2014, 356, 743.  doi: 10.1002/adsc.v356.4

    71. [71]

      Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.  doi: 10.1021/acs.orglett.5b03608

    72. [72]

      Zhong, S.; Liu, Y.; Cao, X; Wan, J.-P. ChemCatChem 2017, 9, 465.  doi: 10.1002/cctc.v9.3

    73. [73]

      Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167.  doi: 10.1021/acs.joc.5b01602

    74. [74]

      Zhao, W.; Zhou, A. ChemCatChem 2015, 7, 3464.  doi: 10.1002/cctc.v7.21

    75. [75]

      Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861.  doi: 10.1039/C5RA10763F

    76. [76]

      Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708.  doi: 10.1021/acs.orglett.6b02939

  • 加载中
    1. [1]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    2. [2]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    3. [3]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Shouchao ZhongYue WangMingshu XieYiqian WuJiuqiang LiJing PengLiyong YuanMaolin ZhaiWeiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312

    9. [9]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    11. [11]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    12. [12]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    13. [13]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    14. [14]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    15. [15]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Jun JiangHui DaiTao Tu . Two vicinal C(sp3)-F bonds functionalization of perfluoroalkyl halides (PFAHs). Chinese Chemical Letters, 2025, 36(7): 111054-. doi: 10.1016/j.cclet.2025.111054

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

Metrics
  • PDF Downloads(16)
  • Abstract views(2986)
  • HTML views(461)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return