Citation: Zhang Zhiguo, Zheng Dan, Ma Na'na, Bi Jingjing. Brønsted Acid-Promoted the Synthesis of Furo[2, 3-b]quinolines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1824-1829. doi: 10.6023/cjoc201612032 shu

Brønsted Acid-Promoted the Synthesis of Furo[2, 3-b]quinolines

  • Corresponding author: Zhang Zhiguo, zhangzg@htu.edu.cn
  • Received Date: 8 December 2016
    Revised Date: 19 January 2017
    Available Online: 1 July 2017

    Fund Project: the National Natural Science Foundation of China 21272057the Outstanding Young Talent Cultivation Project Funding of Henan Normal University 14YR002the Key Project of Henan Provincal Educational Committee 14B150042the Young Backbone Teachers Fund of Henan Province 2014GGJS-049the National Natural Science Foundation of China 21372065Project supported by the National Natural Science Foundation of China (Nos. 21272057, 21372065), the Young Backbone Teachers Fund of Henan Province(No. 2014GGJS-049), the Key Project of Henan Provincal Educational Committee (Nos. 14A150019, 14B150042, 15A150015), the Science & Technology Innovation Talents in Universities of Henan Province (No. 17HASTIT002), and the Outstanding Young Talent Cultivation Project Funding of Henan Normal University (No. 14YR002)the Science & Technology Innovation Talents in Universities of Henan Province 17HASTIT002the Key Project of Henan Provincal Educational Committee 15A150015the Key Project of Henan Provincal Educational Committee 14A150019

Figures(4)

  • The furoquinoline unit is present in many natural products. Here, an approach is presented for the preparing of furo[2, 3-b]quinolines from readily available multi-substituted furans in the presence of Brønsted acid via an intramolecular cyclization under the heating conditions. Simple operation, good compatibility, high regioselectivity and morderate yields are the advantages of the method.
  • 加载中
    1. [1]

      (a) Abass, M. Heterocycles 2005, 65, 901.
      (b) Wang, R.; Liu, Z.-Q. Med. Chem. Res. 2013, 22, 1563.
      (c) Huffman, J. W.; Browder, L. E. J. Org. Chem. 1964, 29, 2598.

    2. [2]

      (a) Grougnet, R.; Magiatis, P.; Fokialakis, N.; Mitaku, S.; Skaltsounis, A. L.; Tillequin, F.; Sevenet, T.; Litaudon, M. J. Nat. Prod. 2005, 68, 1083.
      (b) Ambrozin, A. R. P.; Mafezoli, J.; Vieira, P. C.; Fernandes, J. B.; da Silva, M.; Ellena, J. A.; de Albuquerque, S. J. Braz. Chem. Soc. 2005, 16, 434.
      (c) Ito, C.; Itoigawa, M.; Sato, A.; Hasan, C. M.; Rashid, M. A.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Furukawa, H. J. Nat. Prod. 2004, 67, 1488.
      (d) Ayafor, J. F.; Okogun, J. I. J. Chem. Soc., Perkin Trans. 11982, 909.
      (e) Okogun, J. I.; Ayafor, J. F. Chem. Commun. 1977, 652.

    3. [3]

      (a) Mabire, D.; Coupa, S.; Adelinet, C.; Poncelet, A.; Simonnet, Y.; Venet, M.; Wouters, R.; Lesage, A. S. J.; Van Beijsterveldt, L.; Bischoff, F. J. Med. Chem. 2005, 48, 2134.
      (b) Michael, J. P. Nat. Prod. Rep. 2002, 19, 742.
      (c) Michael, J. P. Nat. Prod. Rep. 2004, 21, 650.
      (d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627.
      (e) Michael, J. P. Nat. Prod. Rep. 2003, 20, 476.

    4. [4]

      Tuppy, H.; Bohm, F. Angew. Chem., Int. Ed. 1956, 68, 388.

    5. [5]

      (a) Yu, L.-Z.; Hu, X.-B.; Xu, Q.; Shi, M. Chem. Commun. 2016, 52, 2701.
      (b) Boyd, D. R.; Sharma, N. D.; Barr, S. A.; Carroll, J. G.; Mackerracher, D.; Malone, J. F. J. Chem. Soc., Perkin Trans. 12000, 3397.

    6. [6]

      (a) Aillaud, I.; Bossharth, E.; Conreaux, D.; Desbordes, P.; Monteiro, N.; Balme, G. Org. Lett. 2006, 8, 1113.
      (b) Sekar, M.; Prasad, K. J. R. J. Nat. Prod. 1998, 61, 294.
      (c) Narasimhan, N. S.; Mali, R. S. Tetrahedron 1974, 30, 4153.
      (d) Collins, J. F.; Gray, G. A.; Grundon, M. F.; Harrison, D. M.; Spyropoulos, C. G. J. Chem. Soc., Perkin Trans. 11973, 94.
      (e) Narasimhan, N. S.; Paradkar, M. V.; Alurkar, R. H. Tetrahedron 1971, 27, 1351.
      (f) Cooke, R. G.; Haynes, H. F. Aust. J. Chem. 1958, 11, 225.
      (g) Grundon, M. F.; McCorkindale, N. J. J. Chem. Soc. 1957, 2177.
      (h) Guo, R.-H.; Zhang, Q.; Ma, Y.-B.; Luo, J.; Geng, C.-A.; Wang, L.-J.; Zhang, X.-M.; Zhou, J.; Jiang, Z.-Y.; Chen, J.-J. Eur. J. Med. Chem. 2011, 46, 307.

    7. [7]

      (a) Nagarajan, R.; Magesh, C. J.; Perumal, P. T. Synth. Stuttg. 2004, 69.
      (b) Yadav, J. S.; Reddy, B. V. S.; Madhuri, C. R.; Sabitha, G. Synth. Stuttg. 2001, 1065.
      (c) Yadav, J. S.; Reddy, B. V. S.; Gayathri, K. U.; Prasad, A. R. Synth. Stuttg. 2002, 2537.

    8. [8]

      Li, X.; Wang, C; Zheng, L. Chin. J. Org. Chem. 2006, 26, 1144(in Chinese).  doi: 10.3321/j.issn:0253-2786.2006.08.024
       

    9. [9]

      (a) Zhang, Z.; Zhang, Q.; Sun, S.; Xiong, T.; Liu, Q. Angew. Chem., Int. Ed. 2007, 46, 1726.
      (b) Ru, T. Light Ind. Sci. Technol. 2013, 5, 58(in Chinese). (茹婷婷, 轻工科技, 2013, 5, 58.)
      (c) Du, W.; Curran, D. P. Org. Lett. 2003, 5, 1765.

    10. [10]

      Zhang, Q.; Zhang, Z.; Yan, Z.; Liu, Q.; Wang, T. Org. Lett. 2007, 9, 3651.  doi: 10.1021/ol701536q

    11. [11]

      Zhang, Z. G. Ph.D. Dissertation, Northeast Normal University, Changchun, 2010(in Chinese).

    12. [12]

      Sai, K. K. S.; Gilbert, T. M.; Klumpp, D. A. J. Org. Chem. 2007, 72, 9761.  doi: 10.1021/jo7013092

    13. [13]

      Heaney, H. In Comprehensive Organic Synthesis, Vol. 2, Eds.:Trost, B. M.; Fleming, I., Pergamon, Oxford, 1991, pp. 733~752.

    14. [14]

      (a) Zhang, Z.; Zhang, Q.; Yan, Z.; Liu, Q. J. Org. Chem. 2007, 72, 9808.
      (b) Xiong, T.; Zhang, Q.; Zhang, Z.; Liu, Q. J. Org. Chem. 2007, 72, 8005.

  • 加载中
    1. [1]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    8. [8]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    14. [14]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    17. [17]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

Metrics
  • PDF Downloads(7)
  • Abstract views(2058)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return