Citation: Wu Yunying, Gou Gaozhang, Wu Xianxue, Yang Lijun, Fu Wenfu. Synthesis and Spectroscopic Properties of N, O-Chelated Pyridine-BF2 Complexes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 704-710. doi: 10.6023/cjoc201607013 shu

Synthesis and Spectroscopic Properties of N, O-Chelated Pyridine-BF2 Complexes

  • Corresponding author: Fu Wenfu, wuyy@yxnu.net
  • Received Date: 8 July 2016
    Revised Date: 30 September 2016

    Fund Project: the Youth Project of Science and Technology Department of Yunnan Province 2014FD50the General Program of Yunnan Provincial Education Department 2015Y455

Figures(4)

  • The six novel N, O-chelated pyridine-BF2 complexes (2a~2f) were successfully obtained by a facile two-step synthesis from 2-amino-pyridine derivatives. All compounds synthesized were fully characterized by 1H NMR, 13C NMR, 19F NMR, IR, ESI-MS and X-ray diffraction analysis. It was found that complexes 2b, 2c, 2e and 2f, in which electron-donating groups were substituted on p-positions of the phenyl ring (or 6-positions of the pyridine ring) exhibit a structured absorption at 360~420 nm (λabs=368, 400, 365, 418 nm) with a large extinction coefficient, such as 28760, 51980, 25250, 40750 L·mol-1·cm-1, respectively. In sharp contrast, the complexes 2a and 2d with a relatively neutral group (H for 2a) or an electron-withdrawing group (COOMe for 2d) on the p-position of the phenyl ring gave the absorption (λabs) blue shifted to 340 and 337 nm. Meanwhile, the intramolecular charge transfer (ICT) could be detected for complexes 2b, 2c, 2e and 2f, whose emission bands bathochromic shift significantly and emission intensities decreased with increasing the solvent polarities. Additionally, similar to most boron-dipyrromethene derivatives (BODIPYs) and their derivatives, this pyridine-BF2 complex exhibited faint photoluminescence in the solid state. In order to better illustrate intramolecular charge transfer in 2b, 2c, 2e and 2f, theoretical calculations were carried out. Therefore, these experimental facts and theoretical calculations support our proposed ICT mechanism in the novel boron fluoride complexes 2b, 2c, 2e and 2f, and reveal that substituent groups have a significant in-fluence on optical properties. The investigations of novel pyridine-BF2 complexes will provide favorable foundation and theo-retical support for the further development of ICT-based fluorescent dyes and their applications.
  • 加载中
    1. [1]

    2. [2]

      Kubota, Y.; Tsuzuki, T.; Funabiki, K.; Ebihara, M.; Matsui, M. Org. Lett. 2010, 12, 4010.  doi: 10.1021/ol101612z

    3. [3]

      (a) Nagai, A.; Kokado, K.; Nagata, Y.; Arita, M.; Chujo, Y. J. Org. Chem.2008, 73, 8605.
      (b) Poon, C.T.; Lam, W. H.; Wong, H. L.; Yam, V. W. W. J. Am. Chem. Soc. 2010, 132, 13992.

    4. [4]

      (a) Claessens, C. G.; González-Rodŕguez, D.; Torres, T. Chem. Rev.2002, 102, 835.
      (b) Zhu, H.; Shimizu, S.; Kobayashi, N. Angew. Chem., Int. Ed. 2010, 49, 8000.

    5. [5]

      (a) Yoshino, J.; Furuta, A.; Kambe, T.; Itoi, H.; Kano, N.; Kawashima, T.; Ito, Y.; Asashima, M.Chem.-Eur. J.2010, 16, 5026.
      (b) Yoshino, J.; Kano, N.; Kawashima, T. Chem. Commun. 2007, 6, 559.

    6. [6]

      Kubota, Y.; Hara, H.; Tanaka, S.; Funabiki, K.; Matsui, M. Org. Lett. 2011, 13, 6544.  doi: 10.1021/ol202819w

    7. [7]

      Yang, Y.; Hughes, R. P.; Aprahamian, I. J. Am. Chem. Soc. 2014, 136, 13190.  doi: 10.1021/ja508125n

    8. [8]

      Liao, C. W.; Rao, M. R.; Sun, S. S. Chem. Commun. 2015, 51, 2656.  doi: 10.1039/C4CC08958H

    9. [9]

      Wang, X. Q.; Liu, Q. S.; Yan, H.; Liu, Z. P.; Yao, M. G.; Zhang, Q. F.; Gong, S. W.; He, W. J. Chem. Commun. 2015, 51, 7497.  doi: 10.1039/C5CC01902H

    10. [10]

      (a) Cosgrave, L.; Devocelle, M.; Forster, R. J.; Keyes, T. E. Chem. Commun.2010, 46, 103.
      (b) Zhang, D.; Wen, Y.; Xiao, Y.; Yu, G.; Liu, Y.; Qian, X. Chem. Commun.2008, 4777.

    11. [11]

      (a) Hepp, A.; Uirich, G.; Schmechel, R.; von Seggern, H.; Ziessel, R. Synth. Met.2004, 146, 11.
      (b) Qu, X.; Liu, Q.; Ji, X.; Chen, H.; Zhou, Z.; Shen, Z. Chem. Commun.2012, 48, 4600.

    12. [12]

      Martin, A.; Long, C.; Forster, R. J.; Keyes, T. E. Chem. Commun. 2012, 48, 5617.  doi: 10.1039/c2cc31150j

    13. [13]

      (a) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev.2003, 103, 3899.
      (b) Seo, J.; Kim, S.; Park, S. Y. J. Am. Chem. Soc.2004, 126, 11154.
      (c) Zhao, G. J.; Chen, R. K.; Sun, M. T.; Liu, J. Y.; Li, G. Y.; Gao, Y. L.; Han, K. L.; Yang, X. C.; Sun, L. Chem.-Eur. J.2008, 14, 6935.
      (d) Araneda, J. F.; Piers, W. E.; Heyne, B.; Parvez, M.; McDonald, R. Angew. Chem., Int. Ed. 2011, 50, 12214.

    14. [14]

      (a) Wu, Y. Y.; Chen, Y.; Gou, G. Z.; Mu, W. H.; Lv, X. J.; Du, M. L.; Fu, W. F. Org. Lett. 2012, 14: 5226.
      (b) Wu, Y. Y.; Chen, Y.; Mu, W. H.; Lv, X. J.; Fu, W. F. J. Photochem. Photobiol. A 2013, 72, 73.

    15. [15]

      Chakraborty, A.; Kar, S.; Guchhait, N. Chem. Phys. 2006, 320, 75.  doi: 10.1016/j.chemphys.2005.06.031

    16. [16]

      Chipem, F. A. S.; Mishra, A.; Krishnamoorthy, G. Phys. Chem. Chem. Phys. 2012, 14, 8775.  doi: 10.1039/c2cp23879a

    17. [17]

      Singh, T. S.; Mitra, S. J. Lumin. 2007, 127, 508.  doi: 10.1016/j.jlumin.2007.03.001

    18. [18]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165 (in Chinese).  doi: 10.6023/A15090628

    19. [19]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuj, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

    20. [20]

      Wu, Y. X.; Ren, H. Y.; Wu, Y. F.; Wang, B. X. Acta Chim. Sinica 2015, 73, 53 (in Chinese).  doi: 10.6023/A14110795

    21. [21]

      Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5nd ed., Butterworth-Heinemann Press, Oxford, 2003.

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    17. [17]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

Metrics
  • PDF Downloads(20)
  • Abstract views(2120)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return