Citation: Zou Xiaochuan, Shi Kaiyun, Li Jun, Wang Yue, Wang Cun, Deng Chaofang, Ren Yanrong, Tan Jun, Fu Xiangkai. Research Progress on Epoxidation of Olefins Catalyzed by Mn(II, III, V) in Different Valence States[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1765-1778. doi: 10.6023/cjoc201604010 shu

Research Progress on Epoxidation of Olefins Catalyzed by Mn(II, III, V) in Different Valence States

  • Corresponding author: Shi Kaiyun, shiky@cque.edu.cn Fu Xiangkai, fxk@swu.edu.cn
  • Received Date: 5 April 2016
    Revised Date: 3 May 2016

    Fund Project: the Scientific and Technological Research Program of Chongqing Municipal Education Commission Nos. KJ1501411,KJ131513,KJ131512Projects supported by the Basic and Frontier Research Project of Chongqing  Nos. cstc2015jcyjA0317,cstc2013jcyjA50033and the Innovative Research Team in Chongqing University of Education No. KYC-cxtd03-20141z02the Key Laboratory of Green Synthesis and Analysis of Chongqing University of Education No. 16xjpt08the Innovation Team Building at Institutions of Higher Education in Chongqing No. KJTD201325

Figures(8)

  • The epoxidation catalyzed by transition metals (Cr, Ni, Co, Ru, Mn) has been received widespread attention over the past decades, and the corresponding epoxides are widely used in the synthesis of pharmaceuticals, fine chemicals and pesticides. Compared to other transition metals, metal Mn catalyst has been widely used in organic synthesis due to its inexpensive, environment-friendly, chemical stability and high catalytic activity. This paper reviews the recent progress on epoxidation of olefins catalyzed by the catalysts which were formed by the reaction of different valence metal Mn(II, III, and V) and different NXOY ligands in different oxidants/co-catalyst systems. At the same time, the Mn catalysts with different valence states are involved in the process of the epoxidation of olefins and the mechanism of how to transfer the oxygen of reactive intermediates to the olefins was discussed.
  • 加载中
    1. [1]

    2. [2]

      Limburg, B.; Bouwman, E.; Bonnet, S. Coord. Chem. Rev. 2012, 256, 1451.

    3. [3]

      Talsi, E. P.; Bryliakov, K. P. Coord. Chem. Rev, 2012, 256, 1418. 

    4. [4]

      Monfared, H. H.; Ghorbanloo, M.; Aghapoor, V.; Mayer, P. Appl. Catal. A: Gen. 2010, 372, 209. 

    5. [5]

      Ballistreri, F. P.; Brinchi, L.; Germani, R.; Savelli, G.; Tomaselli, G. A.; Toscanoa, R. M. Tetrahedron 2008, 64, 10239. 

    6. [6]

      Wegermann, C. A.; Ribeiro, R. R.; Ucoski, G. M.; Nakagaki, S.; Nunes, F. S.; Drechsel1, S. M. Appl. Catal. A: Gen. 2014, 471, 56. 

    7. [7]

      Stamatis, A.; Vartzouma, C.; Louloudi, M. Catal. Commun. 2011, 12, 475.

    8. [8]

      Bagherzadeh, M.; Latifi, R.; Tahsini, L. J. Mol. Catal. A: Chem. 2006, 260, 163. 

    9. [9]

      Amini, M.; Bagherzadeh, M. M.; Oradi, S. Z.; Boghaei, D. M.; Ellern, A.; Woo, L. K. J. Coord. Chem. 2013, 66, 464. 

    10. [10]

      Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J Am Chem Soc. 1990, 112, 2801. 

    11. [11]

      Visser, S. P. D.; Sason, S. J. Am. Chem. Soc. 2003, 125, 7413. 

    12. [12]

      Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Chem. Rev. 2005, 105, 1603. 

    13. [13]

      Keerthi, K. K.; Thomas, A. M.; Sindhu, K. S.; Anilkumar, G. Tetrahedron 2016, 72, 1. 

    14. [14]

      Neu, H. M.; Baglia, R. A.; Goldberg, D. P. Acc. Chem. Res. 2015, 48, 2754. 

    15. [15]

      Chen, Z. Q.; Yin, G. C. Chem. Soc. Rev. 2015, 44, 1083. 

    16. [16]

      Chang, S.; Galvin, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 6937. 

    17. [17]

      Choudary, B. M.; Chowdari, N. S.; Kantam, M. L.; Santhi, P. L. Catal. Lett. 2001, 76, 213. 

    18. [18]

      Sutra, P.; Brunel, D. Chem Commun. 1996, 2485.

    19. [19]

      Angelino, M. D.; Laibinis, P. E. Macromolecules 1998, 31, 7581. 

    20. [20]

      Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217.

    21. [21]

      Sui, Y.; Fu, X. K.; Zeng, R. Q.; Ma, X. B. J. Mol. Catal. A: Chem. 2004, 217, 133. 

    22. [22]

    23. [23]

      Bai, R. F.; Fu, X. K.; Bao, H. B.; Ren, W. S. Catal. Commun. 2008, 9, 1588. 

    24. [24]

      Ren, W. S.; Fu, X. K.; Bao, H. B.; Bai, R. F.; Ding, P. P.; Sui, B. L. Catal. Commun. 2009, 10, 788. 

    25. [25]

      Ren, W. S.; Fu, X. K. J. Mol. Catal. A: Chem. 2009, 312, 4.

    26. [26]

    27. [27]

      Shen, H. S.; Fu, X. K.; Bao, H. B.; Chen, J. X., Gong, B.W. Polym. Adv. Technol. 2009, 20, 77. 

    28. [28]

      Zou, X. C.; Chen, S. C.; Ren, Y. R.; Shi, K.Y., Li, J., Fu, X. K. Sci. China. Chem. 2012, 55, 2396. 

    29. [29]

      Tu, X. B.; Fu, X. K.; Hu, X. Y.; Li, Y. D. Inorg. Chem. Commun. 2010, 13, 404. 

    30. [30]

    31. [31]

      Gong, B. W.; Fu, X. K.; Chen, J. X.; Li, Y. D.; Zou, X. C.; Tu, X. B.; Ding, P. P.; Ma, L. P. J. Catal. 2009, 262, 9. 

    32. [32]

      Zou, X. C.; Fu, X. K.; Li, Y. D.; Tu, X. B.; Fu, S. D.; Luo, Y. F.; Wu, X. J. Adv. Synth. Catal. 2010, 352, 163. 

    33. [33]

    34. [34]

    35. [35]

      Zou, X. C.; Shi, K. Y.; Wang, C. Chin. J. Catal. 2014, 35, 1446.

    36. [36]

      Huang, J.; Fu, X. K.; Wang, G.; Li, C,; Hu X. Y. Dalton Trans. 2011, 40, 3631.

    37. [37]

      Huang, J.; Fu, X. K.; Miao, Q. Catal. Sci. Technol. 2011, 1, 1472.

    38. [38]

      Huang, J.; Fu, X. K.; Wang, G.; Miao, Q.; Wang, G. M. Dalton Trans. 2012, 41, 10661. 

    39. [39]

      Cai, J. L.; Huang, J.; Li, C. M.; Feng, H.; Liu, Z. G. RSC Adv. 2013, 3, 18661. 

    40. [40]

      Jia, Z. Y.; Fu, X. K.; Luo, Y. F.; Zhang, H. Z.; Huang, X. M.; Wu, H. J. Inorg. Organomet. Polym. Mater. 2012, 22, 415. 

    41. [41]

      Huang, X. M.; Fu, X. K.; Jia, Z. Y.; Miao, Q.; Wang, G. M. Catal. Sci. Technol. 2013, 3, 415. 

    42. [42]

      Huang, J.; Tang, M.; Li, X.; Zhong, G. Z.; Li, C. M. Dalton Trans. 2014, 43, 17500. 

    43. [43]

      Huang, J.; Tang, M.; Li, C. M. RSC Adv. 2014, 4, 46498. 

    44. [44]

      Kam, P. H.; Wing, L. W.; Kin, M. L.; Cheuk, P. L.; Tak, H. C.; Kwok, Y. W. Chem. Eur. J. 2008, 14, 7988. 

    45. [45]

      Qi, B.; Lou, L. L.; Yu, K.; Bian, W.; Liu, S. X. Catal. Commun. 2011, 15, 52. 

    46. [46]

      Zheng, W. G.; Tan, R.; Zhao, L. L.; Chen, Y. J.; Xiong, C. W.; Yin, D. H. RSC Adv. 2014, 4, 11732. 

    47. [47]

      Qi, J. Y.; Li, Y. M.; Zhou, Z. Y.; Che, C. M.; Yeung, C. H.; Chan, A. S. C. Adv. Synth. Catal. 2005, 347, 45. 

    48. [48]

      Dong, J. J.; Saisaha, P.; Meinds. T, G.; Alsters, P. L.; Ijpeij, E. G.; Van Summeren, R. P.; Mao, B.; Fananas, M. M.; de Boer, J. W.; Hage, R.; Feringa, B. L.; Browne, W. R. ACS Catal. 2012, 2, 1087. 

    49. [49]

      Rich, J.; Manrique, E.; Molton, F.; Duboc, C.; Marie, N. C.; Rodriguez, M.; Romero, I. Eur. J. Inorg. Chem. 2014, 2663.

    50. [50]

      Stamatis, A.; Vartzouma, C.; Louloudi, M. Catal. Commun. 2011, 12, 475.

    51. [51]

      Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem. Soc. 2003, 125, 5250. 

    52. [52]

      Murphy, A.; Pace, A; Stack, T. D. P. Org. Lett. 2004, 6, 3119. 

    53. [53]

      Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622.

    54. [54]

      Maity, N. C.; Bera, P. K.; Ghosh, D.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. U. H.; Bajaj, H. C.; Suresh, E. Catal. Sci. Technol. 2014, 4, 208.

    55. [55]

      Wang, X.; Miao, C.; Wang, S.; Xia, C.; Sun, W. ChemCatChem 2013, 5, 2489.

    56. [56]

      Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. Adv. Synth. Catal. 2011, 353, 885. 

    57. [57]

      Dai,W.; Li, J.; Li, G. S.; Yang, H.; Wang, L. Y.; Gao, S. Org. Lett. 2013, 15, 4138.

    58. [58]

      Dai,W.; Shang, S. S.; Chen, B.; Li, G. S.; Wang, L. Y.; Ren, L. H.; Gao, S. J. Org. Chem. 2014, 79, 6688. 

    59. [59]

      Hashihayata, T.; Ito, Y.; Katsuki, T. Tetrahedron 1997, 53, 9541.

    60. [60]

      Saihu, L.; Benjamin, L. Angew. Chem., Int .Ed. 2010, 49, 628. 

    61. [61]

      Wu, M.; Wang, B.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2009, 11, 3622.

    62. [62]

      Wang, B.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Chem. Eur. J. 2012, 18, 6750. 

    63. [63]

      Wang, X.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. ChemCatchem 2013, 5, 2489. 

    64. [64]

      Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Eur. J. Inorg. Chem. 2014, 33, 5777.

    65. [65]

      Miao, C. X.; Wang, Bin.; Wang, Y.; Xia, C. G.; Lee,Y. M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.

    66. [66]

      Shen, D. Y.; Qiu, B.; Xu, D. Q, Miao, C. X.; Xia, C. G.; Sun, W. Org. Lett. 2016, 18, 372. 

    67. [67]

      Bagherzadeh, M.; Latifi, R.; Tahsini, L. J. Mol. Catal. A: Chem. 2006, 260, 163. 

    68. [68]

      Zhong, S.; Tan, Y.; Fu, Z.; Xie, Q.; Xie, F.; Zhou, X.; Ye, Z.; Peng, G.; Yin, D. J. Catal. 2008, 256, 154. 

    69. [69]

      Ruffo, F.; Bismuto, A.; Carpentieri, A.; Cucciolito, M. E.; Lega, M. Inorg. Chim. Acta 2013, 405, 288.

    70. [70]

      Amato, M. E.; Ballistreri, F. P.; Pappalardo, A.; Tomaselli, G. A.; Toscano, R. M.; Williams, D. J. Eur. J. Org. Chem. 2005, 3562.

    71. [71]

      Suresh, P.; Srimurugan, S.; Dere, T. D.; Ragavan, R. V.; Gopinath, V. S. Tetrahedron: Asymmetry 2013, 24, 669. 

    72. [72]

      Erdem, O.; Guzel, B. Inorg. Chim. Acta 2014, 418, 153.

    73. [73]

      Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345.

    74. [74]

      Katsuki, T. Synlett 2003, 281.

    75. [75]

      Chen, L. H.; Cheng, F. X.; Jia, L.; Zhang, A. J.; Wu, J. C.; Tang, N. Chirality 2011, 23, 69. 

    76. [76]

      Luo, R. C.; Tan, R.; Peng, Z. G.; Zhang, W. G.; Kong, Y.; Yin, D. H. J. Catal. 2012, 287, 170. 

    77. [77]

      Borriello, C.; Litto, R. D.; Panunzi, A.; Ruffo, F. Tetrahedron: Asymmetry 2004, 15, 681. 

    78. [78]

      Zhao, S. S.; Zhao, J. Q.; Zhao, D. M. Carbohydr. Res. 2007, 342, 254. 

    79. [79]

      Huang, X. M.; Fu, X. K.; Wu, X. J.; Jia, Z. Y. Tetrahedron Lett. 2013, 54, 4041. 

    80. [80]

      Solati, Z.; Hashemi, M.; Ebrahimi, L. Catal. Lett. 2011, 141, 163.

    81. [81]

      Bendix, J.; Meyer, K.; Weyhermuller, T.; Bill, E.; Metzler-Nolte, N.; Wieghardt, K. Inorg. Chem. 1998, 37, 1767.

    82. [82]

      Bosch, I. G.; Gómez, L.; Polo, A.; Ribas, X.; Costas, M. Adv. Synth. Catal. 2012, 354, 65. 

    83. [83]

      Lyakin, O.Y.; Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2012, 2, 1196. 

    84. [84]

      Ottenbacher, R. V.; Samsonenko, D. G. Talsi, E. P.; Bryliakov, K. P. ACS Catal. 2014, 4, 1599. 

    85. [85]

      Mcgarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563 

    86. [86]

    87. [87]

       

    88. [88]

      Norrby, P. O.; Linde, C.; kermark, B. J. Am. Chem. Soc. 1995, 117, 11035. 

    89. [89]

      Backvall, J. E.; Bokman, F.; Blomberg, M. R. A. J. Am. Chem. Soc. 1992, 114, 534. 

    90. [90]

      Adam, W.; Mock, K. C.; Saha, M. C. R.; Herderich, M. J. Am. Chem. Soc. 2000, 122, 9685. 

    91. [91]

       

    92. [92]

    93. [93]

      Fraile, J. M.; Garci, J. I.; Mayoral, J. A. Chem Rev. 2009, 109, 360. 

    94. [94]

      Sellner, H.; Kajalainen, J. K.; Seebach, D. Chem. Eur. J. 2001, 7, 2873. 

    95. [95]

      Paucki, M.; Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 9333. 

    96. [96]

      Kureshy, R. I.; Ahamd, I.; Khan, N. H.; Abdi, S. H. R.; Singh, S.; Pandia, P. H.; Jasram, R. V. J. Catal. 2005, 235, 28. 

    97. [97]

       

    98. [98]

       

    99. [99]

      Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063. 

    100. [100]

      Hosoya, N.; Hatayama, A.; Irie, R.; Sasaki, H.; Katsuki, T. Tetrahedron 1994, 50, 4311.

    101. [101]

      Rao, C. N. R.; Natarajan, S.; Neeraj, S. J. Solid State Chem. 2000, 152, 302. 

    102. [102]

      Thomas, J. M.; Raja, R.; Sankar, G. Nature 1999, 398, 227.

    103. [103]

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    4. [4]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(2378)
  • HTML views(855)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return