Citation: Wu Ruihua, Yang Wen, Cheng Guo, Li Yue, Yang Dingqiao. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Oxa(Aza)bicyclic Alkenes with Carbanion Nucleophiles[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2368-2379. doi: 10.6023/cjoc201604006 shu

Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Oxa(Aza)bicyclic Alkenes with Carbanion Nucleophiles

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 3 April 2016
    Revised Date: 17 May 2016

    Fund Project: and the City of Guangzhou Science and Technology Plan Projects No.156300018the Natural Science Foundation of Guangdong Province No.S2013020013091Project supported by the National Natural Science Foundation of China Nos.21172081, 21372090

Figures(5)

  • The recent progress in transition metal-catalyzed asymmetric ring-opening reactions of oxa(aza)bicyclic alkenes with carbanion nucleophiles is reviewed with focus on the influence of the types of transition metal catalysts, carbanion nucleophiles, ligands, the structures of oxa(aza)bicyclic alkenes, solvents and additives on the asymmetric ring-opening reactions. Moreover, the parties of possible mechanisms for the asymmetric ring-opening reactions are also discussed.
  • 加载中
    1. [1]

       

    2. [2]

      Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govonig, S. J. Med. Chem. 1995, 38, 942. 

    3. [3]

      Pineschi, M. New J. Chem. 2004, 28, 657.

    4. [4]

      Kamal, A.; Gayatri, N. L. Tetrahedron Lett. 1996, 37, 3359. 

    5. [5]

      Sobti, A.; Kim, K.; Sulikowski, G. A. J. Org. Chem. 1996, 61, 6. 

    6. [6]

      Johnson, B. M.; Chang, P. T. Anal. Profiles Drug Subst. Excipients 1996, 24, 443. 

    7. [7]

      Murakami, M.; Lgawa, H. Chem. Commun. 2002, 4, 390.

    8. [8]

      Degnan, A. P.; Meyers, A. I. J. Org. Chem. 2000, 65, 3503. 

    9. [9]

      Wu, M.-S.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2005, 70, 9545.

    10. [10]

      Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2006, 8, 621.

    11. [11]

      Alexakis, A.; Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.

    12. [12]

      Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48. 

    13. [13]

      Lautens, M.; Fagnou, K. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5455. 

    14. [14]

      Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.

    15. [15]

      Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437. (b) Li, M.; Yan, X.-X.; Hong, W.; Zhu, X.-Z.; Cao, B.-X.; Sun, J.; Hou, X.-L. Org. Lett. 2004, 6, 2833. 

    16. [16]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. Org. Lett. 2003, 5, 1333. (b) Zhang, W.; Wang, L.-X.; Shi, W.-J.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 3734.

    17. [17]

      Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 131. (b) Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695.

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934. 

    22. [22]

      Cabrera, S.; Arrayas, R. G.; Alonso, I.; Carretero,. C. J. Am. Chem. Soc. 2005, 127, 17938. 

    23. [23]

      Zhang, T.-K.; Yuan, K.; Hou, X.-L. J. Org. Chem. 2007, 692, 1912.

    24. [24]

      Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida, K. Angew. Chem., Int. Ed. 2007, 46, 8636. 

    25. [25]

      Endo, K.; Tanaka, K.; Ogawa, M.; Shibata, T. Org. Lett. 2011, 13, 868.

    26. [26]

      Chen, C.-L.; Martin, S. F. J. Organomet. Chem. 2006, 71, 4810

    27. [27]

      Huang, K.-L.; Guo, C.; Cheng, L.-J.; Xie, L.-G.; Zhou, Q.-L.; Xu, X.-H.; Zhu, S.-F. Adv. Synth. Catal. 2013, 355, 2833.

    28. [28]

      Shukla, P.; Sharma, A.; Pallavi, B.; Cheng, C.-H. Tetrahedron 2015, 71, 2260.

    29. [29]

      Tenaglia, A.; Marc, S. J. Org. Chem. 2008, 73, 1397. 

    30. [30]

      Tenaglia, A.; Marc, S.; Giordano, L.; Riggi, I. D. Angew. Chem., Int. Ed. 2011, 50, 9062. 

    31. [31]

      Fan, B.-M.; Li, S.-F.; Chen, H.-L.; Lu, Z.-W.; Liu, S.-S.; Yang, Q.-J.; Yu, L.; Xu, J.-B.; Zhou, Y.-Y.; Wang, J. Adv. Synth. Catal. 2013, 355, 2827. 

    32. [32]

      Mo, D.-L.; Chen, B.; Ding, C.-H.; Dai, L.-X.; Ge, G.-C.; Hou, X.-L. Organometallics 2013, 32, 4465.

    33. [33]

      Liu, S.-S.; Li, S.-F.; Chen, H.-L.; Yang, Q.-J.; Xu, J.-B.; Zhou, Y.-Y.; Yuan, M.-L.; Zeng, W.-M.; Fan, B.-M. Adv. Synth. Catal. 2014, 356, 2960.

    34. [34]

      Mannathana, S.; Cheng, C.-H. Adv. Synth. Catal. 2014, 356, 2239.

    35. [35]

      Zhou, Y.-Y.; Liu, S.-S.; Chen, H.-L.; Chen, J.-C.; Sun, W.-Q.; Li, S.-F.; Yang, Q.-J.; Fan, B.-M. Chin. J. Chem. 2015, 11, 15.

    36. [36]

      Chen, J.-C.; Liu, S.-S.; Zhou, Y.-Y.; Li, S.-F.; Lin, C.-Y.; Bian, Z.-X.; Fan, B.-M. Organometallics 2015, 34, 4318.

    37. [37]

      Menard, F.; Lautens, M. Angew. Chem., Int. Ed. 2008, 47, 2085. 

    38. [38]

      Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10, 3689.

    39. [39]

      Machin, B.; Ballantine, M.; Mandel, J.; Blanchard, N.; Tam, W. J. Org. Chem. 2009, 74, 7261. 

    40. [40]

      Huang, X.-J.; Mo, D.-L.; Ding, C.-H.; Hou, X.-L. Synlett 2011, 943.

    41. [41]

      Tsui, G. C.; Tsoung, J.; Dougan, P.; Lautens, M. Org. Lett. 2012, 14, 5542.

    42. [42]

      Pan, X.-J.; Huang, G.-B.; Long, Y.-H.; Zuo, X.-J.; Xu, X.; Gu, F.-L.; Yang, D.-Q. J. Org. Chem. 2014, 45, 187.

    43. [43]

      Zeng, Z.-Y.; Yang, D.-Q.; Long, Y.-H.; Pan, X.-J.; Huang, G.-B.; Zuo, X.-J.; Zhou, W. J. Org. Chem. 2014, 79, 5249. 

    44. [44]

      Edmundsa, M.; Menarda, M. L.; Tam, W. Synth. Commun. 2015, 45, 468.

    45. [45]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2005, 7, 219. 

    46. [46]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Synthesis 2006, 1205.

    47. [47]

      Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.

    48. [48]

      Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem. Asian J. 2008, 3, 2105.

    49. [49]

      Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Synthesis 2009, 2101.

    50. [50]

      Yang, D.-Q.; Liang, N. Org. Biomol. Chem. 2014, 10, 1039.

    51. [51]

      Pineschi, M.; Moro, F. D.; Crotti, P.; Macchia, F. Org. Lett. 2005, 7, 3605.

    52. [52]

      Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Tetrahedron Lett. 2009, 50, 3474.

    53. [53]

      Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8407.

    54. [54]

      Wu, M.-S.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2005, 70, 9545.

    55. [55]

      Nájera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867.

    56. [56]

      Rappoport, Z.; Marek, I. The Chemistry of Organolithium Compounds, John Wiley & Sons Ltd, Chichester, UK, 2004, Chapter 1.

    57. [57]

      Bos, P. H.; Rudolph, A.; Perez, M.; Fananas, M.; Harutyunyan, S. R.; Feringa, B. L. Chem. Commun 2012, 48, 1748. 

    58. [58]

      Sawama, Y.; Sawama, Y.; Krause, N. Org. Lett. 2009, 11, 5034.

    59. [59]

      Sawama, Y.; Kawamoto, K.; Satake, H.; Krause, N.; Kita, Y. Synlett 2010, 2151.

    60. [60]

      Loh, C.; Fang, X.; Peters, B.; Lautens, M. Chem. Eur. J. 2015, 21, 13883. 

    61. [61]

      Zhou, H.; Li, J.; Yang, H.; Xia, C.; Jiang, G. Org. Lett. 2015, 17, 4628.

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    20. [20]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

Metrics
  • PDF Downloads(0)
  • Abstract views(1062)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return