Citation: Chen Wenkun, Yang Dingqiao. Progress in Lanthanide Metals Catalyzed Asymmetric Cycloaddition Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2075-2090. doi: 10.6023/cjoc201604005 shu

Progress in Lanthanide Metals Catalyzed Asymmetric Cycloaddition Reactions

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 3 April 2016
    Revised Date: 29 April 2016

    Fund Project: the Natural Science Foundation of Guangdong Province S2013020013091Project supported by the National Natural Science Foundation of China 21172081the City of Guangzhou Science and Technology Plan Projects 156300018Project supported by the National Natural Science Foundation of China 21372090

Figures(21)

  • The recent progress in lanthanide metals catalyzed asymmetric cycloaddition reactions is reviewed, mainly including[4+2], [3+2], [2+2] and[2+1] asymmetric cycloaddition reactions. Moreover, the possible mechanisms of some parts of reactions are also discussed.
  • 加载中
    1. [1]

      Qian, C.-T.; Wang, C.-H.; Chen, Y.-F.Acta Chim.Sinica 2014, 72, 883(in Chinese).  doi: 10.6023/A14060434

    2. [2]

      Qian, C.-T.; Du, C.-P.Organolanthanide Chemistry, Chemical Industry Press, Beijing, 2004(in Chinese).

    3. [3]

      Averill, D.J.; Allen, M.J.Catal.Sci.Technol.2014, 4, 4129.  doi: 10.1039/C4CY01117A

    4. [4]

      Kumagai, N.; Shibasaki, M.Angew.Chem., Int.Ed.2013, 52, 223.  doi: 10.1002/anie.201206582

    5. [5]

      Edelmann, F.T.Coord.Chem.Rev.2014, 261, 73.  doi: 10.1016/j.ccr.2013.11.008

    6. [6]

      Ward, B.D.; Gade, L.H.Chem.Commun.2012, 48, 10587.  doi: 10.1039/c2cc34997c

    7. [7]

      Jia, Y.; Fan, M.; Chen, H.-N.; Miao, Y.-T.; Xing, L.; Jiang, B.-H.; Cheng, Q.-F.; Liu, D.-W.; Bao, W.-K.; Qian, B.; Wang, J.-L.; Xing, X.-D.; Tan, H.-P.; Ling, Z.-H.; Chen, Y.J.Colloid Interface Sci.2015, 458, 293.  doi: 10.1016/j.jcis.2015.07.062

    8. [8]

      Kotha, S.; Deodhar, D.; Khedkar, P.Org.Biomol.Chem.2014, 12, 9054.  doi: 10.1039/C4OB01446D

    9. [9]

      Juhl, M.; Tanner, D.Chem.Soc.Rev.2009, 38, 2983.  doi: 10.1039/b816703f

    10. [10]

      Healy, A.R.; Westwood, N.J.Org.Biomol.Chem.2015, 13, 10527.  doi: 10.1039/C5OB01771H

    11. [11]

      Smith, L.K.; Baxendale, L.R.Org.Biomol.Chem.2015, 13, 9907.  doi: 10.1039/C5OB01524C

    12. [12]

      Takao, K.I.; Munakata, R.; Tadano, K.I.Chem.Rev.2005, 105, 4779.  doi: 10.1021/cr040632u

    13. [13]

      Bednarski, M.; Damishotsky, S.J.Am.Chem.Soc.1983, 105, 3716.  doi: 10.1021/ja00349a064

    14. [14]

      Bednarski, M.; Maring, C.; Damishotsky, S.Tetrahedron Lett.1983, 24, 3451.  doi: 10.1016/S0040-4039(00)86010-4

    15. [15]

      罗人仕, 杨定乔, 有机化学, 2007, 27, 958.
       

    16. [16]

      Hu, P.; Long, Y.-H.; Wang, H.; Mo, H.-H.Chin.J.Org.Chem.2008, 28, 1181(in Chinese). 

    17. [17]

      边红旭, 杨定乔, 有机化学, 2010, 30, 506.
       

    18. [18]

      Duan, Z.-B.; Long, Y.-H.; Yang, D.-Q.Chin.J.Org.Chem.2010, 30, 368(in Chinese).
       

    19. [19]

      曾中一, 杨定乔, 有机化学, 2013, 33, 2131.  doi: 10.6023/cjoc201301072
       

    20. [20]

      Cheng, G.; Yang, D.-Q.Chin.J.Org.Chem.2015, 35, 2023(in Chinese). (程果, 杨定乔, 有机化学, 2015, 35, 2023.)  doi: 10.6023/cjoc201505023

    21. [21]

      Furuta, K.; Miwa, Y.; Iwanaga, K.; Yamamoto, H.J.Am.Chem.Soc.1988, 110, 6254.
      (b) Chapuis, C.; Jurczak, J.Helv.Chim.Acta 1987, 70, 436.
      (c) Narasaka, K.; Inoue, M.; Okada, N.Chem.Lett.1986, 1109.
      (d) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, H.J.Am.Chem.Soc.1988, 110, 310.
      (e) Oppolzer, W.Angew.Chem., Int.Ed.1984, 23, 876.

    22. [22]

      Corey, E.J.Angew.Chem., Int.Ed.2002, 41, 1650.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Diels, O.; Alder, K.Ann.Chem.1926, 450, 237.
      (b) Diels, O.; Alder, K.Ann.Chem.1927, 460, 98.

    24. [24]

      Desimoni, G.; Faita, G.; Guala, M.; Laurenti, A.Eur.J.Org.Chem.2004, 14, 3057.

    25. [25]

      Desimoni, G.; Faita, G.; Guala, M.; Laurenti, A.; Mella, M.Chem.Eur.J.2005, 11, 3816.  doi: 10.1002/(ISSN)1521-3765

    26. [26]

      Desimoni, G.; Faita, G.; Guala, M.; Piccinini, F.; Toscanini, M.Eur.J.Org.Chem.2007, 9, 1529.

    27. [27]

      Fukuzawa, S.I.; Yahara, Y.; Kamiyama, A.; Hara, M.; Kikuchi, S.Org.Lett.2005, 7, 5809.  doi: 10.1021/ol0523291

    28. [28]

      Li, C.; Wang, H.CN 101116828, 2006[Chem.Abstr.2008, 148, 308326].

    29. [29]

      Sudo, Y.; Shirasaki, D.; Harada, S.; Nishida, A.J.Am.Chem.Soc.2008, 130, 12588.  doi: 10.1021/ja804430n

    30. [30]

      Harada, S.; Toudou, N.; Hiraoka, S.; Nishida, A.Tetrahedron Lett.2009, 50, 5652.  doi: 10.1016/j.tetlet.2009.07.110

    31. [31]

      Hiraoka, S.; Harada, S.; Nishida, A.J.Org.Chem.2010, 75, 3871.  doi: 10.1021/jo1003746

    32. [32]

      Harada, S.; Morikawa, T.; Nishida, A.Org.Lett.2013, 15, 5314.  doi: 10.1021/ol402559z

    33. [33]

      Mikami, K.; Kotera, O.; Motoyama, Y.; Sakaguchi, H.Synlett 1995, 975.

    34. [34]

      Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W.Chem.Rev.2002, 102, 2227.
      (b) Kobayashi, S.In Topics in Organometallic Chemistry, Vol.2, Ed.:Beller, M., Springer, Berlin, 1999, p.77.
      (c) Shibasaki, M.; Yamada, K.; Yoshikawa, N.In Lewis Acids in Organic Synthesis, Ed.:Yamamoto, H., Wiley, Weinheim, 2000, Chapter 20.2.
      (d) Aplander, K.; Ding, R.; Lindstrom, U.M.; Wennerberg, J.; Schultz, S.Angew.Chem., Int.Ed.2007, 46, 4543.

    35. [35]

      Qian, C.-T.; Wang, L.-C.Tetrahedron Lett.2000, 41, 2203.  doi: 10.1016/S0040-4039(00)00144-1

    36. [36]

      Furuno, H.; Kambara, T.; Tanaka, Y.; Hanamoto, T.; Kagawa, T.; Inanaga, J.Tetrahedron Lett.2003, 44, 6129.  doi: 10.1016/S0040-4039(03)01460-6

    37. [37]

      Furuno, H.; Hanamoto, T.; Sugimoto, Y.; Inanaga, J.Org.Lett.2000, 2, 49.  doi: 10.1021/ol991189q

    38. [38]

      Tiseni, P.S.; Peters, R.Org.Lett.2008, 10, 2019.  doi: 10.1021/ol800742d

    39. [39]

      Zhu, Y.; Xie, M.-S.; Dong, S.; Zhao, X.-H.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M.Chem.Eur.J.2011, 17, 8202.  doi: 10.1002/chem.v17.29

    40. [40]

      Xu, Z.-H.; Liu, L.; Wheeler, K.; Wang, H.Angew.Chem., Int.Ed.2011, 50, 3484.  doi: 10.1002/anie.201100160

    41. [41]

      Luan, Y.; Barbato, K.S.; Moquist, P.N.; Kodama, T.; Schaus, S.E.J.Am.Chem.Soc.2015, 137, 3233.  doi: 10.1021/jacs.5b00757

    42. [42]

      Ishitani, H.; Kobayashi, S.Tetrahedron Lett.1996, 37, 7357.
      (b) Kobayashi, S.; Nagayama, S.J.Am.Chem.Soc.1996, 118, 8977.

    43. [43]

      Chen, Z.-L.; Lin, L.-L.; Chen, D.-H.; Li, J.-T.; Liu, X.-H.; Feng, X, -M.Tetrahedron Lett.2010, 51, 3088.  doi: 10.1016/j.tetlet.2010.04.009

    44. [44]

      Jørgensen, K.A.Angew.Chem., Int.Ed.2000, 39, 3558.  doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Deng, Y.M.; Karunaratne, C.V.; Csatary, E.; Tierney, D.L.; Wheeler, K.; Wang, H.J.Org.Chem.2015, 80, 7984.  doi: 10.1021/acs.joc.5b00895

    46. [46]

      Hrdina, R.; Guenee, L.; Moraleda, D.; Lacour, J.Organometallics 2013, 32, 473.  doi: 10.1021/om300935u

    47. [47]

      Xiao, Q.; Young, K.; Zakarian, A.Org.Lett.2013, 15, 3314.  doi: 10.1021/ol401354a

    48. [48]

      Young, K.; Xiao, Q.; Zakarian, A.Eur.J.Org.Chem.2013, 11, 2337.

    49. [49]

      Gothelf, K.V.; Jorgensen, K.A.Chem.Rev.1998, 98, 863.  doi: 10.1021/cr970324e

    50. [50]

      Frederickson, M.Tetrahedron 1997, 53, 403.  doi: 10.1016/S0040-4020(96)01095-2

    51. [51]

      Hashimoto, T.; Maruoka, K.J.Am.Chem.Soc.2015, 115, 9653.

    52. [52]

      Yamamoto, H.; Hayashi, S.; Kubo, M.; Harada, M.; Hasegawa, M.; Noguchi, M.; Sumimoto, M.; Hori, K.Eur.J.Org.Chem.2007, 17, 2859.

    53. [53]

      Gucma, M.; Gobiewski, W.M.J.Heterocycl.Chem.2008, 45, 241.  doi: 10.1002/jhet.v45:1

    54. [54]

      Gobiewski, W.M.; Gucma, M.J.Heterocycl.Chem.2008, 45, 1687.  doi: 10.1002/jhet.v45:6

    55. [55]

      Gucma, M.; Gobiewski, W.M.Catal.Sci.Technol.2011, 1, 1354.  doi: 10.1039/c1cy00178g

    56. [56]

      Suga, H.; Inoue, K.; Inoue, S.; Kakehi, A.; Shiro, M.J.Org.Chem.2005, 70, 47.  doi: 10.1021/jo049007f

    57. [57]

      Padwa, A.; Weingarten, M.D.Chem.Rev.1996, 96, 223.  doi: 10.1021/cr950022h

    58. [58]

      Padwa, A.; Hornbuckle, S.F.Chem.Rev.1991, 91, 263.  doi: 10.1021/cr00003a001

    59. [59]

      Suga, H.; Shimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa, T.; Tsuchida, T.; Kakehi, A.; Baba, T.Org.Lett.2007, 9, 4359.  doi: 10.1021/ol701936b

    60. [60]

      Suga, H.; Higuchi, S.; Ohtsuka, M.; Ishimoto, D.; Arikawa, T.; Hashimoto, Y.; Misawa, S.; Tsuchida, T.; Kakehi, A.; Baba, T.Tetrahedron 2010, 66, 3037.  doi: 10.1016/j.tet.2010.02.057

    61. [61]

      Suga, H.; Hashimoto, Y.; Yasumura, S.; Takezawa, R.; Itoh, K.; Kakehi, A.J.Org.Chem.2013, 78, 10840.  doi: 10.1021/jo401837d

    62. [62]

      Chen, W.-L.; Lin, L.-L.; Cai, Y.-F.; Xia, Y.; Cao, W.-D.; Liu, X.-H.; Feng, X.-M.Chem.Commun.2014, 50, 2161.  doi: 10.1039/c3cc48606k

    63. [63]

      Kobayashi, S.; Kawamura, M.J.Am.Chem.Soc.1998, 120, 5840.  doi: 10.1021/ja980702c

    64. [64]

      Evans, D.A.; Song, H.-J.; Fandrick, K.R.Org.Lett.2006, 8, 3351.  doi: 10.1021/ol061223i

    65. [65]

      Barros, M.T.; Faísca Phillips, A.M.Tetrahedron:Asymmetry 2010, 21, 2746.  doi: 10.1016/j.tetasy.2010.10.028

    66. [66]

      Tonoi, T.; Mikami, K.Tetrahedron Lett.2005, 46, 6355.  doi: 10.1016/j.tetlet.2005.07.043

    67. [67]

      Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S.J.Am.Chem.Soc.1992, 114, 8869.  doi: 10.1021/ja00049a020

    68. [68]

      Fan, B.-M.; Li, X.-J.; Peng, F.-Z.; Zhang, H.-B.; Chan, A.C.S.; Shao, Z.H.Org.Lett.2010, 12, 304.  doi: 10.1021/ol902574c

    69. [69]

      Aggarwal, V.K.; Belfield, A.J.Org.Lett.2003, 5, 5075.  doi: 10.1021/ol036133h

    70. [70]

      France, S.; Wack, H.; Hafez, A.M.; Taggi, A.E.; Witsil, D.R.; Lectka, T.Org.Lett.2002, 4, 1603.  doi: 10.1021/ol025805l

    71. [71]

      Calter, M.A.; Tretyak, O.A.; Flaschenriem, C.Org.Lett.2005, 7, 1809.  doi: 10.1021/ol050411q

    72. [72]

      Huang, Y.-Z.; Calter, M.A.Tetrahedron Lett.2007, 48, 1657.  doi: 10.1016/j.tetlet.2006.12.091

    73. [73]

      Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M.J.Am.Chem.Soc.2007, 129, 13410.  doi: 10.1021/ja076797c

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    14. [14]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(0)
  • Abstract views(2130)
  • HTML views(365)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return