Citation: Su Biyun, Jia Peiyu, Wang Yanzhao, Li Yaning, Huang He, Li Qianding. Copolymerization of Ethylene/Polar Monomer Catalyzed by Phosphinoarenesulfonate (PO) Metal Catalysts and the Catalytic Mechanism[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2344-2352. doi: 10.6023/cjoc201603048 shu

Copolymerization of Ethylene/Polar Monomer Catalyzed by Phosphinoarenesulfonate (PO) Metal Catalysts and the Catalytic Mechanism

  • Corresponding author: Su Biyun, subiyun@xsyu.edu.cn.
  • Received Date: 30 March 2016
    Revised Date: 11 May 2016

    Fund Project: ProjectProject of Shaanxi Education Department No.12JK0620and the Science and Technology Research Program of Shaanxi Province No.2013 KJXX-33

Figures(2)

  • The metal catalysts based on phosphinoarenesulfonate (PO) ligand display interesting olefin polymerization prop-erties, which not only polymerize ethylene to linear polyethylene, but also copolymerize ethylene with polar vinyl monomers or CO to functional linear copolymers. The structural features of PO ligand and the novel polymerization reactions initiated by (PO)Pd(Ⅱ) complexes are assumed. Then the application of (PO)Ni(Ⅱ) catalysts in the copolymerization of ethylene with polar monomers, as well as the rare catalytic properties of Pd(Ⅱ), Ru(Ⅳ) catalysts based on phosphine-bis(arenesulfonate) (OPO) ligands are reviewed. At last, the influence of PO ligand structural features such as symmetry, flexibility, steric effect in axial direction, as well as the pure electronic effect on the insertion and polymerization reactivity of PO metal catalyst are explored, at the same time, the catalytic reaction mechanism is also studied.
  • 加载中
    1. [1]

       

    2. [2]

      Nakamura, A.; Ito, S, Nozaki, K. Chem. Rev. 2009, 109, 5215.

    3. [3]

      Berkefeld, A.; Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538. 

    4. [4]

      Ito, S.; Nozaki, K. Chem. Rec. 2010, 10, 315.

    5. [5]

      Chung, T. C. Functionalization of Polyolefins, Academic Press, USA, 2002, p. 69.

    6. [6]

      Osakada, K. Organometallic Reactions and Polymerization, Lecture Notes in Chemistry, Springer-Verlag, Berlin Heidelberg, 2014.

    7. [7]

      Desurmont, G.; Tokimitsu, T.; Yasuda, H. Macromolecules 2000, 33(21), 7679.

    8. [8]

      Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. 

    9. [9]

      Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Organometallics 2014, 33, 3546. 

    10. [10]

      Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.

    11. [11]

      Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. 

    12. [12]

      Hou, Z. M.; Luo, Y. J.; Li, X. F. J. Organomet. Chem. 2006, 691(14), 3114. 

    13. [13]

      Yamamoto, A.; Nishiura, M.; Oyamada, J.; Koshino, H.; Hou, Z. M. Macromolecules 2016, 49(7), 2458. 

    14. [14]

      Kang, X. H.; Zhou, G. L.; Wang, X. B.; Qu, J. P.; Hou, Z. M.; Luo, Y. Organometallics 2016, 35(6), 913. 

    15. [15]

      Soller, B. S.; Sun, Q.; Salzinger, S.; Jandl, C.; Pöthig, A.; Rieger, B. Macromolecules 2016, 49(5), 1582.

    16. [16]

      Wang, Z. C.; Liu, D. T.; Cui, D. M. Macromolecules 2016, 49(3), 781. 

    17. [17]

      Kuhn, P.; Semeril, D.; Matt, D.; Chetcuti, M. J.; Lutz, P. Dalton. Trans. 2007, 515.

    18. [18]

      Murray, R. E.; Charleston, W. V. US 4689437, 1987[Chem. Abstr. 1988, 108, 6646].

    19. [19]

      Murray, R. E.; Wenzel, T. T. Am. Chem. Soc. Div. Pet. Chem. 1989, 34, 599.

    20. [20]

      Drent, E.; Van, D. R.; Van, G. R.; Van, O. B.; Pugh, R. I. Chem. Commun. 2002, 744.

    21. [21]

      Drent, E.; Van, D. R.; Van, G. R.; Van, O. B.; Pugh, R. I. Chem. Commun. 2002, 964.

    22. [22]

      Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005, 24, 2755. 

    23. [23]

      Kochi, T.; Yoshimura, K.; Nozaki, K. Dalton. Trans. 2006, 25.

    24. [24]

      Kryuchkov, V. A.; Daigle, J. C.; Skupov, K. M.; Winnik, F. M.; Claverie,J. P. J. Am. Chem. Soc. 2010, 132, 15573. 

    25. [25]

      Friedberger, T.; Wucher, P.; Mecking, S. J. Am. Chem. Soc. 2012, 134, 1010. 

    26. [26]

      Runzi, T.; Frohlich, D.; Mecking, S. J. Am. Chem. Soc. 2014, 132, 17690.

    27. [27]

      Daigle, J. C.; Piche, L. C.; Claverie, J. P. Macromolecules 2011, 44, 1760. 

    28. [28]

      Shen, Z. L.; Jordan, R. F. Macromolecules 2010, 43, 8706. 

    29. [29]

      Luo, S. J.; Vela, J.; Lief, G. R.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 8946. 

    30. [30]

      Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41, 2309. 

    31. [31]

      Bouilhac, C.; Runzi, T.; Mecking, S. Macromolecules 2010, 43, 3589.

    32. [32]

      Nakamura, A.; Anselment, T. M. J.; Claverie. J. P.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; Leeuwen, P. W. N. M.; Nozaki, K. Acc. Chem. Res. 2013, 46(7), 1438. 

    33. [33]

      Guironnet, D.; Roesle, P.; Rünzi, T.; Göttker-Schnetmann, I.; Mecking, S. J. Am. Chem. Soc. 2009, 131, 422. 

    34. [34]

      Berkefeld, A.; Guironnet, D.; Neuwald, B.; Roesle, P.; Rünzi, T.; Wucher, P.; Göttker-Schnetmann, I.; Dürr, C.; Mecking, S. Polym. Prepr. 2010, 51(2), 367.

    35. [35]

      Matthew, P. C.; Richard, F. J. Angew. Chem., Int. Ed. 2011, 50, 3744. 

    36. [36]

      Albietz, P. J.; Cleary, B. P.; Paw, W.; Eisenberg, R. Inorg. Chem. 2002, 41, 2095.

    37. [37]

      Casares, J. A.; Espinet, P. Inorg. Chem. 1997, 36, 5428.

    38. [38]

      Carrow, B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8820.

    39. [39]

      Wilkes, C. E.; Daniels, C. A.; Summers, J. W. PVC Handbook, Carl Hanser Verlag, Munich, 2005.

    40. [40]

      Boone, H. W.; Athey, P. S.; Mullins, M. J.; Philipp, D.; Muller, R.; Goddard, W. A. J. Am. Chem. Soc. 2002, 124, 8790. 

    41. [41]

      Philipp, D. M.; Muller, R. P.; Goddard, W. A.; Storer, J.; McAdon, M.; Mullins, M. J. Am. Chem. Soc. 2002, 124, 10198. 

    42. [42]

      Foley, S. R.; Stockland, R. A.; Shen, H. J.; Jordan, R. F. J. Am. Chem. Soc. 2003, 125, 4350. 

    43. [43]

      Nozaki, K.; Carrow, B. P. J. Am. Chem. Soc. 2012, 134, 8802. 

    44. [44]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Angew. Chem., Int. Ed. 2013, 52, 3963. 

    45. [45]

      Zhang, D.; Guironnet, D.; Göttker-Schnetmann, I.; Mecking, S. Organometallics 2009, 28, 4072.

    46. [46]

      Perrotin, P.; McCahill, J. S. J.; Wu, G.; Scott, L. S. Chem. Commun. 2011, 47, 6948. 

    47. [47]

      Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. 

    48. [48]

      Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. 

    49. [49]

      Zhou, X. Y.; Bontemps, S.; Jordan, R. F. Organometallics 2008, 27(19), 4822.

    50. [50]

      Nowack, J. R.; Hearley, K. A.; Rieger, B. Z. Anorg. Allg. Chem. 2005, 631, 2775. 

    51. [51]

      Guironnet, D.; Runzi, T.; Göttker-Schnetmann, I.; Mecking, S. Med. Chem. Commun. 2008, 4965.

    52. [52]

      Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Organometallics 2014, 33, 3546. 

    53. [53]

      Shen, Z,; Jordan, R. F. J. Am. Chem. Soc. 2010, 132, 52. 

    54. [54]

      Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. 

    55. [55]

      Kuwabara, J.; Tekeuchi, D.; Osakada, K. Chem. Commun. 2006, 3815.

    56. [56]

      Rodriguez, B. A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5902. 

    57. [57]

      Shen, Z. L.; Jordan, R. F. Macromolecules 2010, 43, 8706. 

    58. [58]

      Carrow, B. P.; Nozaki, K. Macromolecules 2014, 47(8), 2541. 

    59. [59]

      Friedberger, T.; Ziller, J. W.; Guan, Z. B. Organometallics 2014, 33, 1913. 

    60. [60]

      Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17773. 

    61. [61]

      Neuwald, B.; Caporaso, L.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2013, 135, 1026 

    62. [62]

      Anselment, T. M. J.; Wichmann, C.; Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30, 6602.

    63. [63]

      Wucher, P.; Goldbach, V.; Mecking, S. Organometallics 2013, 32, 4516.

    64. [64]

      Rünzi, T.; Tritschler, U.; Roesle, P.; Göttker-Schnetmann, I.; Möller, H. M.; Caporaso, L.; Poater, A.; Cavallo, L.; Mecking, S. Organometallics 2012, 31, 8388.

    65. [65]

      Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L. ACS Catal. 2016, 6(1), 428. 

    66. [66]

      Ito, S.; Wang, W. H.; Nozaki, K. Polym. J. 2015, 47, 474.

    67. [67]

      Jian, Z. B.; Falivene, L.; Wucher, P.; Roesle, P.; Caporaso, L.; Cavallo, L.; Inigo G., S.; Mecking, S. J. Chem. Eur. 2015, 21, 2062. 

    68. [68]

      Labed, A.; Jiang, F.; Labed, I.; Lator, A.; Peters, M.; Achard, M.; Kabouche, A.; Kabouche, Z.; Sharma, G. V. M.; Bruneau, C. ChemCatChem 2015, 7, 1090. 

    69. [69]

      Li, M. L.; Song; H. B.; Wang, B. Q. Organometallics 2015, 34(10), 1969. 

    70. [70]

      Nakano, R.; Nozaki, K. J. Am. Chem. Soc. 2015, 137(34), 10934. 

    71. [71]

      Schuster, N.; Rünzi, T.; Mecking, S. Macromolecules 2016, 49(4), 1172.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(0)
  • Abstract views(2024)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return