Citation: Li Yibiao, Cheng Liang, Chen Lu, Li Bin, Sun Ning, Qing Ning. One-Pot Synthesis of Substituted Thiophene and Furan Derivatives from Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2426-2436. doi: 10.6023/cjoc201603029 shu

One-Pot Synthesis of Substituted Thiophene and Furan Derivatives from Terminal Alkynes

  • Corresponding author: Li Yibiao, leeyib268@126.com
  • Received Date: 16 March 2016
    Revised Date: 17 May 2016

    Fund Project: Foundation for Distinguished Young Talents in Higher Education of Guangdong Province 2013LYM_0094Science Foundation for Young Teachers of Wuyi University 2015td01National Natural Science Foundation of China 21302146Natural Science Foundation of Guangdong Province S2013040012354

Figures(3)

  • The development of efficient and sustainable methods for the synthesis of thiophene and furan derivatives is an important task because of the central role of this class of compounds in many natural products, pharmaceuticals and designed materials applications. In this work, a highly efficient selective synthesis of 2,5-disubstituted furan, 2,5-disubstituted thiophene derivatives, benzo[b]furan and benzo[b]thiophene derivatives using terminal alkynes has been developed. This one-pot procedure involves C(sp)-C(sp) oxidative coupling reaction, the selective hydration and intramolecular annulation of two C≡C triple bond which is a promising synthetic strategy. Meanwhile, the benzo[b]furan and benzo[b]thiophene derivatives were facilely synthesized via Sonogashira coupling reaction, regioselective C-F bond hydration and annulation process in good yield. This reaction was a convenient and simple pathway for the synthesis of the thiophene or furan derivatives.
  • 加载中
    1. [1]

       

    2. [2]

      For selected review, see:(a) Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1. (b) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (c) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (d) Lu, H.; Liu, G. T. Planta Med. 1992, 58, 311. (e) Navarro, E.; Alonso, S. J.; Trujillo, J.; Jorge, E.; Pérez, C. J. Nat. Prod. 2001, 64, 134. (f) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. Biomol. Chem. 2011, 9, 641. (g) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670. (h) Palkowitz, A. D.; Glasebrook, A. L.; Thrasher, K. J.; Hauser, K. L.; Short, L. L.; Philips, D. L.; Muehl, B. S.; Sato, M.; Shetler, P. K.; Cullinan, G. J.; Pell, T. R.; Bryant, H. U. J. Med. Chem. 1997, 40, 1407. (i) Tsuji, H.; Cantagrel, G.; Ueda, Y.; Chen, T.; Wan, L. J.; Nakamura, E. Chem. Asian J. 2013, 8, 2377. 

    3. [3]

      Li, F.; Chordia, M. D.; Woodling, K. A.; Macdonald, T. L. Chem. Res. Toxicol. 2007, 20, 1854. (b) Carter, G. W.; Young, P. R.; Albert, D. H.; Bouska, J.; Dyer, R.; Bell, L.; Summers J. B.; Brooks, D. W. J. Pharmacol. Exp. Ther. 1991, 256, 929. 

    4. [4]

      Qin, Z.; Kastrati, I.; Chandrasena, R. E. P.; Liu, H.; Yao, P.; Petukhov, P. A.; Bolton, J. L.; Thatcher, G. R. J. J. Med. Chem. 2007, 50, 2682. 

    5. [5]

       

    6. [6]

    7. [7]

      Lenden, P.; Entwistle, D. A.; Willis, M. C. Angew. Chem., Int. Ed. 2011, 50, 10657. (b) Nun, P.; Dupuy, S.; Gaillard, S.; Poater, A.; Cavallo, L.; Nolan, S. P. Catal. Sci. Technol. 2011, 1, 58. (c) Kel'in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95. (d) Rao, H. S. P.; Jothilingam, S. J. Org. Chem. 2003, 68, 5392. (e) Aponick, A.; Li, C. Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11, 4624. (f) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002. (g) Dheur, J.; Sauthier, M.; Castanet, Y.; Mortreux, A. Adv. Synth. Catal. 2010, 352, 557. 

    8. [8]

      Zheng, Q.; Hua, R.; Jiang, J.; Zhang, L. Tetrahedron 2014, 70, 8252. (b) Zheng, Q.; Hua, R.; Yin, T. Curr. Org. Synth. 2013, 10, 161.

    9. [9]

      Klukas, F.; Grunwald, A.; Menschel, F.; Müller, T. J. J. Beilstein J. Org. Chem. 2014, 10, 672. 

    10. [10]

      Kramer, S.; Madsen, J. L. H.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2010, 12, 2758. (b) Sheng, H. Y.; Lin, S. Y.; Huang, Y. C. Synthesis 1987, 1022.

    11. [11]

      Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179. 

    12. [12]

      Zhang, M.; Jiang, H. F.; Neumann, H.; Beller, M.; Dixneuf, P. Angew. Chem., Int. Ed. 2009, 48, 1681. 

    13. [13]

      Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C. Lei, A. Org. Lett. 2014, 16, 6156.

    14. [14]

      Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei, A. Org. Lett. 2015, 17, 2404.

    15. [15]

      Karatas, F.; Koca, M.; Kara, H.; Servi, S. Eur. J. Med. Chem. 2006, 41, 664. (b) Navarro, E.; Alonso, S. J.; Trujillo, J.; Jorge, E.; Pérez, C. J. Nat. Prod. 2001, 64, 134. (c) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670. (d) Lu, H.; Liu, G. T. Planta Med. 1992, 58, 311. (e) Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1. 

    16. [16]

      Kraus, G. A.; Schroeder, J. D. Synlett 2005, 2504. (b) Anxionnat, B.; Pardo, D. G.; Ricci, G.; Rossen, K.; Cossy, J. Org. Lett. 2013, 15, 3876. (c) Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11, 4978. (d) Wang, X.; Liu, M.; Xu, L.; Wang, Q.; Chen, J.; Ding, J.; Wu, H. J. Org. Chem. 2013, 78, 5273. (e) Siddiqui, I. R.; Waseem, M. A.; Shamim, S.; Shireen, Srivastava, A.; Srivastava A. Tetrahedron Lett. 2013, 54, 4154.

    17. [17]

      Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (b) Cho, C. H.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Comb. Chem. 2008, 10, 941. 

    18. [18]

      Liu, Y.; Wang, H.; Wan, J.-P. J. Org. Chem. 2014, 79, 10599. (b) Wan, J-P.; Wang, H.; Liu, Y.; Ding, H. Org. Lett. 2014, 16, 5160.

    19. [19]

      Guilarte, V.; Fernández-Rodríguez, M. A.; García-García, P.; Hernandor, E.; Sanz, R. Org. Lett. 2011, 13, 5100.

    20. [20]

      Prasad, D. J. C.; Sekar, G. Org. Biomol. Chem. 2013, 11, 1659. 

    21. [21]

      Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100.

    22. [22]

      Li, Y.; Cheng, L.; Liu, X.; Li, B.; Sun, N. Beilstein J. Org. Chem. 2014, 10, 2886.

    23. [23]

      Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149. 

    24. [24]

      Sun, L. L.; Deng, C. L.; Tang, R. Y.; Zhang, X. G. J. Org. Chem. 2011, 76, 7546. (b) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009, 48, 4222. 

    25. [25]

      Irudayanathan, F. M.; Raja, G. C. E.; Lee, S. Tetrahedron 2015, 71, 4418.

    26. [26]

      Urselmann, D.; Antovic, D.; Müller, T. J. J. Beilstein J. Org. Chem. 2011, 7, 1499. 

    27. [27]

      Tan, J.; Zhao, X. RSC Adv. 2012, 2, 5488.

    28. [28]

      Moure, M. J.; Martin, R. S.; Domínguez, E. Adv. Synth. Catal. 2014, 356, 2070. 

    29. [29]

      Rao, M. L. N.; Awasthi, D. K.; Talode, J. B. Tetrahedron Lett. 2012, 53, 2662. 

    30. [30]

      Dao-Huy, T.; Haider, M.; Clatz, F.; Schnürch, M.; Mihovilovic, M. D. Eur. J. Org. Chem. 2014, 8119.

    31. [31]

      Jaseer, E. A.; Prasad, D. J. C.; Sekar, G. Tetrahedron 2010, 66, 2077.

    32. [32]

      Duan, X. F.; Zeng, J.; Zhang, Z. B.; Zi, G. F. J. Org. Chem. 2007, 72, 10283. 

    33. [33]

      Pan, W. B.; Chen, C. C.; Wei, L. L.; Wei, L. M.; Wu, M. M. Tetrahedron Lett. 2013, 54, 2655. 

    34. [34]

      Bryan, C. S.; Braunger, J. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 7064. 

    35. [35]

      Bíró, A. B.; Kotschy, A. Eur. J. Org. Chem. 2007, 1364.

    36. [36]

      Li, Y.; Cheng, L.; Li, B.; Jiang, S.; Chen, L.; Shao, Y. Chem. Select. 2016, 1, 1092.

  • 加载中
    1. [1]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    7. [7]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    8. [8]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    9. [9]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    12. [12]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    16. [16]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(0)
  • Abstract views(1771)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return