Citation: Liu Xiaojian, Chen Pinhong, Wu Fanhong. Application of Oxazoline Ligands in Palladium-Catalyzed Asymmetric Oxidative Functionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1797-1804. doi: 10.6023/cjoc201603010 shu

Application of Oxazoline Ligands in Palladium-Catalyzed Asymmetric Oxidative Functionalization of Alkenes

  • Corresponding author: Chen Pinhong, pinhongchen@sioc.ac.cn Wu Fanhong, wfh@sit.edu.cn
  • Received Date: 8 March 2016
    Revised Date: 22 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21472217

Figures(7)

  • Palladium-catalyzed oxidative functionalization of alkenes is one of the most powerful tools to synthesize complicated molecules. The related asymmetric reactions have received much attention. Due to the oxidative condition, however, compatible chiral ligand is quite limited. Recently, oxazoline-type ligand was applied in these reactions and exhibited good to excellent enantioselectivity. In this review, the recent studies on palladium-catalyzed asymmetric oxidative functionalization of alkenes with oxazoline ligands were summarized.
  • 加载中
    1. [1]

    2. [2]

      Minatti, A.; Muñiz, K. Chem. Soc. Rev. 2007, 36, 1142.(b) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.(c) Mann, S. E.; Benhamou, L.; Sheppard, T. D. Synthesis 2015, 47, 3079. 

    3. [3]

      Muñiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.(b) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.(c) Chen, P.; Liu, G.; Engle, K. M.; Yu, J.-Q. In Science of Synthesis: Organometallic Complexes of Palladium, Vol. 1, Ed.: Stoltz, B. M., Thieme, Stuttgart, 2013, p. 63. 

    4. [4]

       

    5. [5]

      Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 5063.(b) Uozumi, Y.; Kato, K.; Hayashi, T. J. Org. Chem. 1998, 63, 5071.(c) Uozumi, Y.; Kyota, H.; Kato, K.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 1999, 64, 1620. 

    6. [6]

      Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. 2004, 126, 3036. 

    7. [7]

      Wang, F.; Zhang, Y. J.; Yang, G.; Zhang, W. Tetrahedron Lett. 2007, 48, 4179.

    8. [8]

      Wang, F.; Zhang, Y. J.; Wei, H.; Zhang, J.; Zhang, W. Tetrahedron Lett. 2007, 48, 4083.

    9. [9]

      Zhang, Y. J.; Wang, F.; Zhang, W. J. Org, Chem. 2007, 72, 9208. (b) Liu, Q.; Wen, K.; Zhang, Z.; Wu, Z.; Zhang, Y. J.; Zhang, W. Tetrahedron 2012, 68, 5209. 

    10. [10]

      Tietze, L. F.; Sommer, K. M.; Zinngrebe, J.; Stecker, F. Angew. Chem. Int. Ed. 2005, 44, 257.(b) Tietze, L. F.; Stecker, F.; Zinngrebe, J.; Sommer, K. M. Chem. Eur. J. 2006, 12, 8770. 

    11. [11]

      Tietze, L. F.; Spiegl, D. A.; Stecker, F.; Major, J.; Raith, C.; Große, C. Chem.-Eur. J. 2008, 14, 8956. 

    12. [12]

      Kawamura, Y.; Kawano, Y.; Matsuda, T.; Ishitobi, Y.; Hosokawa, T. J. Org. Chem. 2009, 74, 3048. 

    13. [13]

      Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076. 

    14. [14]

      Jensen, K. H.; Webb, J. D.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 17471. 

    15. [15]

      Jensen, K. H.; Pathak, T. P.; Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 17074. 

    16. [16]

      Pathak, T. P.; Gligorich, K. M.; Welm, B. M.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870. 

    17. [17]

      Jiang, F.; Wu, Z.; Zhang, W. Tetrahedron Lett. 2010, 51, 5124.

    18. [18]

      Yang, G.; Shen, C.; Zhang, W. Angew. Chem., Int. Ed. 2012, 51, 9141. 

    19. [19]

      Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130. 

    20. [20]

      He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626.

    21. [21]

      McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam. C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830. 

    22. [22]

      Koóš, P.; Špánik, I.; Gracza, T. Tetrahedron: Asymmetry 2009, 20, 2720.

    23. [23]

      Jana, R.; Pathak, T. P.; Jensen, K. H.; Sigman, M. S. Org. Lett. 2012, 14, 4074. 

    24. [24]

    25. [25]

      Akiyama, K.; Wakabayashi, K.; Mikami, K. Adv. Synth. Catal. 2005, 347, 1569. 

    26. [26]

      Penn, L.; Shpruhman, A.; Gelman, D. J. Org. Chem. 2007, 72, 3875. 

    27. [27]

      Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O'Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933. 

    28. [28]

      Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455.(b) Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 3462. 

    29. [29]

      Mei, T.-S.; Werner, E. W.; Burckle, A. J.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 6830. 

    30. [30]

      Dang, Y.; Qu, S.; Wang, Z.-Y.; Wang, X. J. Am. Chem. Soc. 2014, 136, 986.(b) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960. 

    31. [31]

      Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340. 

    32. [32]

      Zhang, C.; Santiago, C. B.; Kou, L.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 7209.

    33. [33]

      Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 15668. 

    34. [34]

      Dai, H.; Lu, X. Org. Lett. 2007, 9, 3077.(b) Lin, S.; Lu, X. Org. Lett. 2010, 12, 2536.

    35. [35]

      Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902. 

    36. [36]

      He, Q.; Xie, F.; Fu, G.; Quan, M.; Shen, C.; Yang, G.; Gridnev, I. D.; Zhang, W. Org. Lett. 2015, 17, 2250.

    37. [37]

      Ingalls, E. L.; Sibbald, P. A.; Kaminsky, W.; Michael, F. E. J. Am. Chem. Soc. 2013, 135, 8854. 

    38. [38]

      Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101. 

    39. [39]

      He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207. 

    40. [40]

      Yu, F.; Chen, P.; Liu, G. Org. Chem. Front. 2015, 2, 819. 

    41. [41]

      Xu, T.; Qiu, S.; Liu, G. J. Organomet. Chem. 2011, 696, 46. 

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    14. [14]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    15. [15]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    19. [19]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    20. [20]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

Metrics
  • PDF Downloads(0)
  • Abstract views(1363)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return