Citation: Zhang Bianxiang, Kang Yongqiang, Shi Ruixue. Synthesis of Aromatic Heterocyclic Sulfide Compounds[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1814-1823. doi: 10.6023/cjoc201602021 shu

Synthesis of Aromatic Heterocyclic Sulfide Compounds

  • Corresponding author: Zhang Bianxiang, zbxthh@sxu.edu.cn
  • Received Date: 22 February 2016
    Revised Date: 25 March 2016

    Fund Project: Project supported by the Science and Technology Innovation Project of Shanxi Province No. 2014101011

Figures(16)

  • Recently, the aromatic heterocyclic sulfide was widely used in medical and functional materials as an intermediate in organic chemistry and a structural unit in drug synthesis. Their synthetic method has become one of the hot research areas. This review summarizes the recent synthetic methods of aromatic heterocyclic thioether, which mainly involves metallic catalyzed and no metal-catalyzed methods, as well as benzene alkyne intermediate method. Some of their synthetic mechanisms were illustrated.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

       

    5. [5]

      Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.

    6. [6]

      Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Chem. Soc. Jpn. 1980, 53, 1385.(b) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.(c) Foa, M.; Santi, R.; Garavaglia, F. J. Organomet. Chem. 1981, 206, C29. 

    7. [7]

      Dickens, M. J.; Gilday, J. P.; Mowlem, T. J.; Widdowson, D. A. Tetrahedron 1991, 47, 8621. 

    8. [8]

      Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Adv. Synth. Catal. 2009, 351, 2615. 

    9. [9]

      Wu, G. L.; Liu, Q.; Shen, Y. L.; Wu, W. T.; Wu, L. M. Tetrahedron Lett. 2005, 46, 5831.(b) Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819.(c) La Regina, G.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Diaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.(d) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.(e) Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034. 

    10. [10]

      Chen, Y.; Cho, C. H.; Shi, F.; Larock, R. C. J. Org. Chem. 2009, 74, 6802. 

    11. [11]

      Anbarasan, P.; Neumann, H.; Beller, M. Chem. Commun. 2011, 47, 3233.

    12. [12]

      Cong, M.; Fan, Y.; Raimundo, J.-M.; Xia, Y.; Liu, Y.; Quelever, G.; Qu, F.-Q.; Peng, L. Chem.-Eur. J. 2013, 19, 17267.(b) Cong, M.; Fan, Y.; Raimundo, J.-M.; Tang, J.; Peng, L. Org. Lett. 2014, 16, 4074. 

    13. [13]

      Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915. 

    14. [14]

      Taniguchi, N. J. Org. Chem. 2007, 72, 1241.(b) Taniguchi, N. Synlett. 2006, 1351. 

    15. [15]

      Luo, P.-S.; Yu, M.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Tetrahedron Lett. 2009, 50, 1066.

    16. [16]

      Fukuzawa, S.-I.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Tetrahedron Lett. 2009, 50, 2374.

    17. [17]

      Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.; Zhang, P.; Hang, K. W.; Liu, X. J. Org. Chem. 2011, 76, 8999. 

    18. [18]

      Dai, C.; Xu, Z.; Huang, F.; Yu, Z.; Gao, Y.-F. J. Org. Chem. 2012, 77, 4414.

    19. [19]

      He, Z.; Luo, F.; Li, Y.; Zhu, G. Tetrahedron Lett. 2013, 54, 5907.

    20. [20]

      Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.

    21. [21]

      Alves, D.; Lara, R. G.; Contreira, M. E.; Radatz, C. S.; Duarte, L. F. B.; Perin, G. Tetrahedron Lett. 2012, 53, 3364. 

    22. [22]

      He, G.; Huang, Y.; Tong, Y.; Zhang, J.; Zhao, D.; Zhou, S.; Han, S. Tetrahedron Lett. 2013, 54, 5318.

    23. [23]

       

    24. [24]

      Jiang, X. F.; Qiao, Z. J. CN 104725172A, 2015 [Chem. Abstr. 2015, 163, 191616].

    25. [25]

      Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874. 

    26. [26]

       

    27. [27]

      Taniguchi, N. J. Org. Chem. 2004, 69, 6904. 

    28. [28]

      Gómez-Benítez, V.; Baldovino-Pantaleón, O.; Herrera-Álvarez, C.; Toscano, R. A.; Morales-Morales, D. Tetrahedron Lett. 2006, 47, 5059. 

    29. [29]

      Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719. 

    30. [30]

      Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem. Eur. J. 2009, 15, 3666.

    31. [31]

      Wang, P.-F.; Wang, X.-Q.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Org. Lett. 2014, 16, 4586.

    32. [32]

      Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.

    33. [33]

      Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125. 

    34. [34]

      Yang, F. L.; Tian, S. K. Angew. Chem., Int. Ed. 2013, 52, 4929. 

    35. [35]

      Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.

    36. [36]

      Kitamura, T.; Zhang, B.-X.; Fujiwara, Y. J. Org. Chem. 2003, 68, 731. 

    37. [37]

      Wang, F.-Y.; Chen, Z.-C.; Zheng, Q.-G. J. Chem. Res. 2004, 127.

    38. [38]

      Wagner, A. M.; Sanford, M. S. J. Org. Chem. 2014, 79, 2263. 

    39. [39]

      Zhan, H.; Cao, H.; Qiu, H.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Tan, J. RSC Adv. 2015, 5, 32205.

    40. [40]

    41. [41]

      Shaw, E.; Bernstein, J.; Losee, K.; Lott, W. A. J. Am. Chem. Soc. 1950, 72, 4362. 

    42. [42]

      Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202. 

    43. [43]

    44. [44]

      Varun, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 9655. 

    45. [45]

    46. [46]

      Yonova, I. M.; Osborne, C. A.; Morrissette, N. S.; Jarvo, E. R. J. Org. Chem. 2014, 79, 1947. 

    47. [47]

      Li, Z. J.; Sun, L.X.; Yang, L.; Zeng, Q. L. Fresen. Environ. Bull. 2015, 24, 3686.

    48. [48]

      Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P. R.; Biju, A. T. Angew. Chem., Int. Ed. 2013, 52, 10040. 

    49. [49]

      Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem. 2005, 44, 4258.

    50. [50]

      Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583. 

    51. [51]

      Toledo, F. T.; Marques, H.; Comasseto, J. V.; Raminelli, C. Tetrahedron Lett. 2007, 48, 8125. 

    52. [52]

      Edwards, A. J.; Willis, A. C.; Wenger, E. Organometallics 2002, 21, 1654. 

    53. [53]

      Dong, Y.; Liu, B.; Chen, P.; Liu, Q.; Wang, M. Angew. Chem., Int. Ed. 2014, 53, 3442. 

    54. [54]

      Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716. 

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    3. [3]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    9. [9]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(0)
  • Abstract views(3495)
  • HTML views(1036)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return