Citation: Xu Guangli, Gang Fangli, Dong Taosheng, Fu Ying, Du Zhengyin. Application of Metal Organic Frameworks in Catalytic Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1513-1527. doi: 10.6023/cjoc201601028 shu

Application of Metal Organic Frameworks in Catalytic Organic Reactions

  • Corresponding author: Du Zhengyin, Clinton_du@126.com
  • Received Date: 20 January 2016
    Revised Date: 2 March 2016

    Fund Project: the Natural Science Foundation of Gansu Province No.1208RJZA140the National Natural Science Foundation of China No. 21262028

Figures(14)

  • Metal organic frameworks (MOFs) as a new type of organic/inorganic hybrid materials have attracted great focus of scientists in almost twenty years. It is composed of organic ligands and inorganic metal units and generally has a varied topological structure and unique physical/chemical properties. Due to its porous frame structure, large specific surface area and great variety, MOFs are widely used in functional materials, gas adsorption, drug sustained release, catalysis and organic synthesis. It can choose different ligands and metal ions, or change the strategy of synthesis to adjust the size, shape and structure of porous structure. The different ligands can determine the different structure and then affect the properties of MOFs. In this review, the preparation of particular functional MOFs structure and the application of various MOFs in organic synthesis and catalytic organic reactions are reviewed in detail. The summary and prospects about MOFs catalyzed organic reactions and the applications are proposed.
  • 加载中
    1. [1]

      Chae, H. K.; Kim, J.; Siberio-Pérez, D. Y.; Eddaoudi, M.; Go, Y.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. 

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Jiang, Y. J.; Huang, J.; Kasumaj, B.; Jeschke, G.; Hunger, M.; Mallat, T.; Baiker, A. J. Am. Chem. Soc. 2009, 131, 2058. 

    6. [6]

    7. [7]

    8. [8]

      Mondal, S. S.; Holdt, H. R. Angew. Chem., Int. Ed. 2015, 54, 2. 

    9. [9]

      Wang, F.; Yu, R.; Wu, X.; Lu, C. Inorg. Chem. Commun. 2012, 19, 70.

    10. [10]

      Yang, J.; Liu, Q.; Sun, W. J. Solid State Chem. 2014, 218, 50. 

    11. [11]

    12. [12]

      Callej, G.; Sanz, R.; Orcajo, G.; Briones, D.; Leo, P.; Martínez, F. Catal. Today 2014, 227, 130. 

    13. [13]

      Sierra, M. P.; Almansa, A. M. R.; Corma, A.; Iglesias, M.; Sánchez, F. J. Catal. 2013, 299, 137. 

    14. [14]

      Jiang, Y.; Huang, J.; Kasumaj, B.; Jeschke, G.; Hunger, M.; Mallat, T.; Baiker, A. J. Am. Chem. Soc. 2009, 131, 2058. 

    15. [15]

      Kang, X. C,; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Angew. Chem., Int. Ed. 2016, 55, 1080. 

    16. [16]

      Yu, J. C.; Cui, Y. J.; Wu, C. D.; Yang, Y.; Chen, B. L.; Qian, G. D. J. Am. Chem. Soc. 2015, 137, 4026. 

    17. [17]

      Dou, Z. H.; Yu, J. C.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Yang, D. R.; Qian, G. D. J. Am. Chem. Soc. 2014, 136, 5527. 

    18. [18]

      Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, Li.; Su, C. Y. Chem. Soc. Rev. 2014, 43, 6011. 

    19. [19]

       

    20. [20]

      Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J Y.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.

    21. [21]

      Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkovc, A.; Francis, V. Chem. Soc. Rev. 2015, 44, 6804. 

    22. [22]

      Kumar, R. S.; Kumar, S. S.; Anbu, M. K. Microporous Mesoporous Mater. 2013, 168, 57. 

    23. [23]

      Jiang, D.; Urakawa, A.; Yulikov, M.; Jeschke, G.; Baiker, A. Chem. Eur. J. 2009, 15, 12255. 

    24. [24]

      Jiang, D.; Mallat, T.; Meier, D. M.; Urakawa, A.; Baiker, A. J. Catal. 2010, 270, 26. 

    25. [25]

      Qi, Y.; Luan, Y.; Yu, J.; Peng, X.; Wang, G. Chem. Eur. J. 2015, 21, 1589. 

    26. [26]

      Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S. Appl. Catal. A: Gen. 2012, 425, 44.

    27. [27]

      Saggadi, H.; Luart, D.; Thiebault, N.; Estel, L.; Polaert, I.; Len, C. Catal. Commun. 2014, 44, 15.

    28. [28]

      Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S.; Vo, A. T. S. Appl. Catal. A: Gen. 2013, 464, 135.

    29. [29]

      Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S. Catalysis 2014, 11, 9.

    30. [30]

      Calleja, G.; Sanz, R.; Orcajo, G.; Briones, D.; Leo, P.; Martínez, F. Catal. Today 2014, 227, 130. 

    31. [31]

      Nguyen, Tung. T.; Nguyen, C. V.; Nguyen, Thao. T.; Phan, N. T. S. Appl. Catal. A: Gen. 2013, 457, 69. 

    32. [32]

      Li, Z.; Xue, L.; Wang, L.; Zhang, S.; Zhao, B. Inorg. Chem. Commun. 2013, 27, 119.

    33. [33]

      Luz, I.; F. X. Xamena, L.; Corma, A. J. Catal. 2010, 276, 134. 

    34. [34]

      Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S. Appl. Catal. A: Gen. 2013, 306, 38.

    35. [35]

      Huang, H.; Arman, H. D.; Li, P.; Regati, S.; Zhao, J.; Chen, B. Chin. Chem. Lett. 2015, 26, 6.

    36. [36]

      Nguyen, T. T.; Phan, N. T. S. RSC Adv. 2014, 4, 52307. 

    37. [37]

      Nguyen, D. T.; Dang, G. H.; Le, D. T.; Truong, T.; Phan, N. T. S. J. Mol. Catal. A: Chem. 2014, 395, 300. 

    38. [38]

      Truong, T.; Nguyen, V. T.; Phan N. T. S. Catal. Lett. 2014, 144, 1877. 

    39. [39]

      Truong, T.; Dang, G. H.; Tran, N. V.; Truong, N. T.; Le, D. T.; Phan, N. T. S. J. Mol. Catal. A: Chem. 2015, 409, 110. 

    40. [40]

      Ho, S. L.; Yoon, I C.; Cho, C. S.; Choi, H. J. J. Organomet. Chem. 2015, 791, 13. 

    41. [41]

      Shultz, A. M.; Farha, O, K.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2009, 131, 4204. 

    42. [42]

      Facchin, G.; Bertani, R.; Berton, A. Inorg. Chim. Acta 1988, 94, 165.

    43. [43]

      Neogi, S.; Sharma, M. K.; Bharadwaj, P. K. J. Mol. Catal. A: Chem. 2009, 299, 1. 

    44. [44]

      Le, K. A.; Phan, T. D.; Phan, N. T. S. Appl. Catal. A: Gen. 2010, 382, 246. 

    45. [45]

      Zhu, W.; He, C.; Wu, X.; Duan, C. Inorg. Chem. Commun. 2014, 39, 83.

    46. [46]

      Nguyen, T. T.; Ta, A. H.; Phan, N. T. S. J. Mol. Catal. A: Chem. 2012, 365, 95. 

    47. [47]

      Zhang, Z.; Xu, X.; Yang, Y.; Nosheen, F.; Saleem, F.; Wang, X. Angew. Chem. 2014, 126, 1.

    48. [48]

      Huang, L.; Liu, W.; Wu, J.; Fu, Y.; Wang, K.; Huo, C.; Du, Z. Tetrahedron Lett. 2014, 55, 2312. (b) Gang, F.; Dong, T; Xu, G.; Fu, Y.; Du, Z. Heterocycles 2015, 91, 1964. (c) Xu, G.; Zhang, Y.; Wang, K.; Fu, Y.; Du, Z. J. Chem. Res. 2015, 39, 399.

    49. [49]

      Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. 

    50. [50]

      Opelt, S.; Türk, S.; Dietzsch, E.; Henschel, A.; Kaskel, S.; Klemm, E. Catal. Commun. 2008, 9, 1286.

    51. [51]

      Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Microporous Mesoporous Mater. 2003, 58, 105.

    52. [52]

      Gao, S. X.; Zhao, N.; Shu, M. H.; Che, S. N. Appl. Catal. A: Gen. 2010, 388, 196. 

    53. [53]

      Dong, Z.; Le, X.; Liu, Y.; Dong, C.; Ma, J. J. Mater. Chem. A 2014, 2, 18775. 

    54. [54]

      Chen, L.; Gao, Z.; Li, Y. Catal. Today 2015, 134, 122.

    55. [55]

      Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 14382. 

    56. [56]

      Rostamnia, S.; Alamgholiloo, H.; Liu, X. J. Colloid Interf. 2016, 469, 310. 

    57. [57]

      Manna, K.; Zhang, T.; Lin, W. B. J. Am. Chem. Soc. 2014, 136, 6566. 

    58. [58]

      Sierra, M. P.; Almansa, A. M. R.; Corm, A.; Marta, I.; Sánchez, F. J. Catal. 2013, 299, 137. 

    59. [59]

      Langmi, H. W.; Mathe, M.; Bessarabov, D.; Ren, J. W. Int. J. Hydrogen Energy 2014, 39, 890. 

    60. [60]

      Herbst, A.; Khutia, A.; Janiak, C. Inorg. Chem. 2014, 53, 7319.

    61. [61]

      Sels, B. F.; Gascon, J. ChemCatChem 2014, 6, 2211. 

    62. [62]

      Férey, G.; Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, G. Angew. Chem., Int. Ed. 2008, 47, 4144. 

    63. [63]

      Saikia, M.; Bhuyan, D.; Saikia, L. New J. Chem. 2015, 39, 64.

    64. [64]

      Abney, C. W.; Lin, W. B.; Manna, K.; Zhang, T.; Carboni, M. J. Am. Chem. Soc. 2014, 136, 13182. 

    65. [65]

      David K.; Cejka, J. R.; Kikhtyanin, O. Catal. Today 2014, 237, 236.

    66. [66]

      Thacker, N. C.; Lin, Z. K.; Zhang, T.; Gilhula, J. C.; Abney, C. W.; Lin, W. B. J. Am. Chem. Soc. 2016, 138, 3501. 

    67. [67]

      Glöggler, S.; Bouchard, L. S.; Brown, J. W.; Nguyen, Q. T.; Otto, T.; Jarenwattananon, N. N. Catal. Commun. 2015, 59, 50. 

    68. [68]

    69. [69]

      Wu, C. D.; Hu, A. G.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940. 

    70. [70]

      Sawano, T.; Thacker, N. C.; Lin, Z. K.; McIsaac, A. R.; Lin, W. B. J. Am. Chem. Soc. 2015, 137, 12241. 

    71. [71]

      Zhang, T.; Manna, K.; Lin, W. B. J. Am. Chem. Soc. 2016, 138, 3241. 

  • 加载中
    1. [1]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    2. [2]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    3. [3]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    12. [12]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    13. [13]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    14. [14]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    19. [19]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(0)
  • Abstract views(4931)
  • HTML views(1134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return