Citation: Li Xiaowei, Zhou Jin, Zhuo Shuping. Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1484-1500. doi: 10.6023/cjoc201601022 shu

Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions

  • Corresponding author: Zhuo Shuping, zhuosp_academic@yahoo.com
  • Received Date: 18 January 2016
    Revised Date: 6 March 2016

    Fund Project: the National Natural Science Foundation of China Nos. 51502162, 21576159the Open Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University No. SKLCC1613

Figures(1)

  • The supported N-heterocyclic carbene (NHC) catalysts have been extensively applied in the catalysis of different organic reactions due to its unique characteristic such as high reactivity, easy separation, purification and recyclability. In this paper, the recent progresses in synthesis and application of supported N-heterocyclic carbene metal complexes based on various types of supports, such as polymer, magnetic nanoparticles, carbon and silica material have been reviewed.
  • 加载中
    1. [1]

      Öfele, K. J. J. Organomet. Chem. 1968, 12, 42. 

    2. [2]

      Wanzlick, H. W.; Schönherr, H. J. Angew. Chem., Int. Ed. Engl. 1968, 7, 141.

    3. [3]

      Arduengo, A. J.; Harlow, R. L.; Kilne, M. J. Am. Chem. Soc. 1991, 113, 361. 

    4. [4]

       

    5. [5]

       

    6. [6]

      Yang, H.-Q.; Wang, Y.-W.; Qin, Y.; Chong, Y.-Z.; Yang, Q.-Z.; Li, G.; Zhang, L.; Li, W. Green Chem. 2011, 13, 1352.

    7. [7]

      Bru, M.; Dehn, R.; Teles, J. H.; Deuerlein, S.; Danz, M.; Müller, I. B.; Limbach, M. Chem. Eur. J. 2013, 19, 11661. 

    8. [8]

      Molnár, Á. Chem. Rev. 2011, 111, 2251.

    9. [9]

      Ranganath, K. V. S.; Onitsuka, S.; Kumar, A. K.; Inanaga, J. Catal. Sci. Technol. 2013, 3, 2161.

    10. [10]

      Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773. 

    11. [11]

      Byun, J. W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837. 

    12. [12]

      Lee, D. H.; Kim, J. H.; Jun, B. H.; Kang, H.; Park, J.; Lee, Y. S. Org. Lett. 2008, 10, 1609. 

    13. [13]

      Kim, J. W.; Kim, J. H.; Lee, D. H.; Lee, Y. S. Tetrahedron Lett. 2006, 47, 4745. 

    14. [14]

      Kim, J. H.; Kim, J. W.; Shokouhimehr, M.; Lee, Y. S. J. Org. Chem. 2005, 70, 6714. 

    15. [15]

      Kim, J. H.; Lee, D. H.; Jun, B. H.; Lee, Y. S. Tetrahedron Lett. 2007, 48, 7079. 

    16. [16]

      Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977. 

    17. [17]

      Yan, C.; Zeng, X.-M.; Zhang, W.-F.; Luo, M.-M. J. Organomet. Chem. 2006, 691, 3391.

    18. [18]

      Gil, W.; Boczoń, K.; Trzeciak, A. M.; Ziółkowski, J. J.; Garcia- Verdugo, E.; Luis, S. V.; Sans, V. J. Mol. Catal. A: Chem. 2009, 309, 131. 

    19. [19]

      Jafarpour, L.; Heck, M. P.; Baylon, C.; Lee, H. M.; Mioskowski, C.; Nolan, S. P. Organometallics 2002, 21, 671. 

    20. [20]

      Yao, Q.-W.; Zhang, Y.-L. J. Am. Chem. Soc. 2004, 126, 74. 

    21. [21]

      Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Synlett 2005, 2948. 

    22. [22]

      Qureshi, Z. S.; Deshmukh, K. M.; Tambade, P. J.; Bhanage, B. M. Synthesis 2011, 243.

    23. [23]

      Bagal, D. B.; Watile, R. A.; Khedkar, M. V.; Dhake, K. P.; Bhanage, B. M. Catal. Sci. Technol. 2012, 2, 354. 

    24. [24]

      Qureshi, Z. S.; Revankar, S. A.; Khedkar, M. V.; Bhanage, B. M. Catal. Today 2012, 198, 148. 

    25. [25]

      He, Y.; Cai, C. Chem. Commun. 2011, 47, 12319.

    26. [26]

      Bergbreiter, D. E.; Su, H. L.; Koizumi, H.; Tian, J.-H. J. Organomet. Chem. 2011, 696, 1272. 

    27. [27]

      Yu, T.; Li, Y.; Yao, C.-F.; Wu, H.-H.; Liu, Y.-M.; Wu, P. Chin. J. Catal. 2011, 32, 1712.

    28. [28]

      Lin, M.-J.; Wang, S.-J.; Zhang, J.-Y.; Luo, W.-J.; Liu, H.-L.; Wang, W.; Su, C.-Y. J. Mol. Catal. A: Chem. 2014, 394, 33.

    29. [29]

      Xu, S.-J.; Song, K.-P.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272. 

    30. [30]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. Appl. Organomet. Chem. 2015, 29, 678. 

    31. [31]

      Wang, X.-X.; Hu, P.-B.; Xue, F.-J.; Wei, Y.-P. Carbohydr. Polym. 2014, 114, 476.

    32. [32]

      Stevens, P. D.; Li, G.-F.; Fan, J.-D.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435.

    33. [33]

      Ranganath, K. V. S.; Schäfer, A. H.; Glorius, F. ChemCatChem 2011, 3, 1889. 

    34. [34]

      Wittmann, S.; Majoral, J. P.; Grass, R. N.; Stark, W. J.; Reiser, O. Green Process. Synth. 2012, 1, 275.

    35. [35]

      Ghotbinejad, M.; Khosropour, A. R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. J. Mol. Catal. A: Chem. 2014, 385, 78. 

    36. [36]

      Zhao, H.-X.; Li, L.-Y.; Wang, J.-Y.; Wang, R.-H. Nanoscale 2015, 7, 3532.

    37. [37]

      Wang, Z.; Yu, Y.; Zhang, Y.-X.; Li, S.-Z.; Qian, H.; Lin, Z.-Y. Green Chem. 2015, 17, 413.

    38. [38]

      Iglesias, D.; Sabater, S.; Azua, A.; Mata, J. A. New J. Chem. 2015, 39, 6437. 

    39. [39]

      Shang, N.-Z.; Gao, S.-T.; Feng, C.; Zhang, H.-Y.; Wang, C.; Wang, Z. RSC Adv. 2013, 3, 21863.

    40. [40]

      Park, J. H.; Raza, F.; Jeon, S. J.; Kim, H. I.; Kang, T. W.; Yim, D. B.; Kim, J. H. Tetrahedron Lett. 2014, 55, 3426. 

    41. [41]

      Movaherd, S. K.; Esmatpoursalmani, R.; Bazgir, A. RSC Adv. 2014, 4, 14586. 

    42. [42]

      Sabater, S.; Mata, J. A.; Peris, E. ACS Catal. 2014, 4, 2038. 

    43. [43]

      Sabater, S.; Mata, J. A.; Peris, E. Organometallics 2015, 34, 1186. 

    44. [44]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. Carbon 2015, 83, 21.

    45. [45]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández- Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. ACS Catal. 2013, 3, 1307.

    46. [46]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Blasco, j.; Subías, G.; Cuartero, V.; Oro, L. A.; Menéndez, R. Carbon 2016, 96, 66.

    47. [47]

      Zhao, Y.-H.; Zhou, Y.-Y.; Ma, D.-D.; Liu, J.-P.; Li, L.; Zhang, T.-Y.; Zhang, H.-B. Org. Biomol. Chem. 2003, 1, 1643.

    48. [48]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Organometallics 2010, 29, 4491.

    49. [49]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Green Chem. 2011, 13, 2471.

    50. [50]

      Dastgir, S.; Coleman, K. S.; Green, M. L. H. Dalton Trans. 2011, 40, 661.

    51. [51]

      Liu, G.; Hou, M.-Q.; Wu, T.-B.; Jiang, T.; Fan, H.-L.; Yang, G.-Y.; Han, B.-X. Phys. Chem. Chem. Phys. 2011, 13, 2062.

    52. [52]

      Li, G.; Yang, H.-Q.; Li, W.; Zhang, G.-L. Green Chem. 2011, 13, 2939.

    53. [53]

      Lázaro, G.; Fernández-Alvarez, F. J.; Iglesias, M.; Horna, C.; Vispe, E.; Sancho, R.; Lahoz, F. J.; Iglesias, M.; Pérez-Torrente, J. J.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 62. 

    54. [54]

      Fernández, M.; Ferré, M.; Pla-Quintana, A.; Parella, T.; Pleixats, R.; Roglans, A. Eur. J. Org. Chem. 2014, 6242.

    55. [55]

      Rostamnia, S.; Hossieni, H. G.; Doustkhah, E. J. Organomet. Chem. 2015, 791, 18. 

    56. [56]

      Tyrrell, E.; Whiteman, L.; Williams, N. J. Organomet. Chem. 2011, 696, 3465. 

    57. [57]

      Borja, G.; Monge-Marcet, A.; Pleixats, R.; Parella, T.; Cattoën, X.; Michel Man, M. W. C. Eur. J. Org. Chem. 2012, 3625.

    58. [58]

      Tamami, B.; Farjadian, F.; Ghasemi, S.; Allahyari, H. New J. Chem. 2013, 37, 2011.

    59. [59]

      Ghiaci, M.; Zarghani, M.; Khojastehnezhad, A.; Moeinpour, F. RSC Adv. 2014, 4, 15496.

    60. [60]

      Conley, M. P.; Copéret, C.; Thieuleux, C. ACS Catal. 2014, 4, 1458.

    61. [61]

      Martínez, A.; Krinsky, J. L.; Peñafiel, I.; Castillón, S.; Loponov, K.; Lapkin, A.; Godard, C.; Claver, C. Catal. Sci. Technol. 2015, 5, 310.

    62. [62]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. New. J. Chem. 2015, 39, 9729.

    63. [63]

      Romanenko, I.; Gajan, D.; Sayah, R.; Crozet, D.; Jeanneau, E.; Lucas, C.; Leroux, L.; Veyre, L.; Lesage, A.; Emsley, L.; Lacôte, E.; Thieuleux, C. Angew. Chem., Int. Ed. 2015, 54, 1. 

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(0)
  • Abstract views(1132)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return