Citation: Kong Xiangfei, Liu Peng, Wang Guixia, Xia Liting, Dai Shengping, Su Jian, Liao Peihai, Liu Zheng, Mu Linping. Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1325-1334. doi: 10.6023/cjoc201512048 shu

Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads

  • Corresponding author: Wang Guixia, 2010033@glut.edu.cn Mu Linping, mulinping6266@163.com
  • Received Date: 30 December 2015
    Revised Date: 22 January 2016

    Fund Project: Project supported by the National Natural Science Fondation of China Nos. 11364013, 21266006the Education Department of Guangxi Province No. KY2015YB129

Figures(10)

  • Columnar discotic liquid crystals have high charge carrier mobility, and donor-bridge-accepter-based supra-mole- cular compounds have photoinduced intramolecular electron transfer behavior. In order to make the organic materials possess these two performances, dyads composed of hexaalkoxy triphenylene unit and perylene monoimide diesters unit were prepared in this work. In the dyads, the flexible alkoxys were used as bridges, the triphenylene units having six electron-donating alkoxy tails acted as electron donors, and the perylene monoimide diesters units having four electron-withdrawing carbonyls acted as electron acceptors. Their structures were established by proton nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), mass spectrometry (MS) and elemental analysis (EA). The photophysical properties were characterized by means of UV-Vis absorption spectroscopy and fluorescence spectroscopy. The results showed that in dilute dichloromethane solutions the absorbance strength of these dyads was the sum of that of their monomers, hexakishexyloxy triphenylene (HAT6) and N-hexyl-perylene monoimide dihexyl esters (PMD6), and not interfered by the length of flexible bridges. When excited at 475 nm, the strength of the fluorescence of the dyads decreased when the spacers shortened from dodecyloxy, decyloxy, hexyloxy to ethoxy groups. Actually, when the spacer was ethoxy group, the fluorescence of the dyad was almost quenched completely. This is attributed to the photoinduced electron transfer properties (PET) between the donor and acceptor units. When excited at 280 nm, the strength of the fluorescence of the triphenylene units also became weaker when the spacers shortened from dodecyloxy to ethanyloxy. At the same time, the strength of the fluorescence of the perylene units became stronger. This is attributed to energy transfer from the triphenylene unit to the perylene unit. In addition, their liquid crystalline properties have been studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that when the spacers were decyloxy and dodecyloxy the dyads possessed columnar liquid crystal behavior in the heating circle, while in the cooling circle only the dyad bearing the dodecyloxy spacer showed mesophase; and dyads bridged by the hexyloxy or ethanyloxy did not show liquid crystal properties in the heating or cooling circle. Electronic energy levels of triphenylene and perylene units of the dyads measured by cyclic voltammetry (CV) are almost the same as that of HAT6 and PMD6, respectively. In conclusion, these dyads have the potential application in the organic photovoltaic field.
  • 加载中
    1. [1]

      Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471. 

    2. [2]

      Bushby, R. J.; Lozman, O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343.

    3. [3]

      Kumar, S. Liq. Cryst. 2004, 31, 1037.

    4. [4]

      Kumar, S. Liq. Cryst. 2013, 40, 1769.

    5. [5]

      Tschierske, C. Angew. Chem., Int. Ed. 2013, 52, 8828. 

    6. [6]

      Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832. 

    7. [7]

      Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569. 

    8. [8]

      Haverkate, L. A.; Zbiri, M.; Johnson, M. R.; Deme, B. J. Phys Chem. B. 2011, 115, 13809. 

    9. [9]

      Craats, A. M.; Warman, J. M.; Fechtenk, A.; Brand, J. D.; Harbison, M. A.; Mullen, K. Adv. Mater 1999, 11, 1469.

    10. [10]

    11. [11]

      Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. 

    12. [12]

      Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684.

    13. [13]

    14. [14]

       

    15. [15]

       

    16. [16]

      Ma, X.; Li, Y.; Qiu, X.; Zhao, K.; Yang, Y.; Wang, C. J. Mater. Chem. 2009, 19, 1490.  

    17. [17]

      Zhu, Y.; Tian, H.; Wu, H.; Hao, D.; Zhou, Y.; Shen, Z.; Zou, D.; Sun, P.; Fan, X.; Zhou, Q. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 295. 

    18. [18]

      Chen, H.; Zhao, K.; Wang, L.; Hu, P.; Wang, B. Soft Mater. 2011, 9, 359.

    19. [19]

      Han, B.; Hu, P.; Wang, B.; Redshaw, C.; Zhao, K. Beilstein J. Org. Chem. 2013, 9, 2852.

    20. [20]

      Yang, F.; Zhang, Y.; Guo, H.; Lin, J. Tetrahedron Lett. 2013, 54, 4953.

    21. [21]

      Zhao, K.; An, L.; Zhang, X.; Yu, W.; Hu, P.; Wang, B.; Xu, J.; Zeng, Q.; Monobe, H.; Shimizu, Y.; Heinrich, B.; Donnio, B. Chem. Eur. J. 2015, 21, 10379 

    22. [22]

      Wang, Y.; Zhang, C.; Wu, H.; Pu, J. J. Mater. Chem. C, 2014, 2, 1667. 

    23. [23]

    24. [24]

      Boden, N.; Bushby, R. J.; Cammidge, A. N.; El-Mansoury, A.; Philip, S.; Martin, P. S.; Lu, Z. J. Mater. Chem. 1999, 9, 1391. 

    25. [25]

      Kumar, S. Liq. Cryst. 2005, 32, 1089.

    26. [26]

    27. [27]

      Hassheider, T.; Benning, S. A.; Kitzerow, H.; Achard, M.; Bock. H. Angew. Chem., Int. Ed. 2001, 40, 2060. 

    28. [28]

      Wicklein, A.; Lang, A.; Much, M.; Thelakkat, M. J. Am. Chem. Soc. 2009, 131, 14442. 

    29. [29]

      Langhals, H. Helv. Chim. Acta 2005, 88, 1309. 

    30. [30]

    31. [31]

      Gupta, S. K.; Setia, S.; Sidiq, S.; Gupta, M.; Kumar, S.; Pal, S. K. RSC Adv. 2013, 3, 12060. 

    32. [32]

    33. [33]

      Lu, Z.; Zhang, X.; Zhan, C.; Jiang, B.; Zhang, X.; Chen, L.; Yao, J.; Phys. Chem. Chem. Phys. 2013, 15, 11375.

    34. [34]

      Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Ringsdorf, H.; Schuhmacher, P.; Siemesmeyer, K. Phys. Rev. Lett. 1993, 70, 457. 

    35. [35]

      Zhao, B.; Peng, R.; Zhang, K.; Lin, K. A.; Luo, J.; Shao, J.; Ho, P., K. H.; Wu, J. Chem. Mater. 2010, 22, 435.

    36. [36]

      Yang, L.; Shi, M.; Wang, M.; Chen, H. Tetrahedron 2008, 64, 5404.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

      Kong, X.; He, Z.; Gopee, H.; Jing, X.; Cammidge, A. N. Tetrahedron Lett. 2011, 52, 77. 

    43. [43]

       

    44. [44]

      Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge. A. N. Org. Lett. 2011, 13, 764.

    45. [45]

    46. [46]

      Mo, X.; Shi, M.; Huang, J.; Wang, M.; Chen, H. Dyes Pigm. 2008, 76, 236.

    47. [47]

      Wang, R.; Shi, Z, Zhang, C.; Zhang, A.; Chen, J.; Guo W.; Sun, Z. Dyes Pigm. 2013, 98, 450.

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    4. [4]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    9. [9]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    13. [13]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    14. [14]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    15. [15]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(1390)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return