Citation: Wang Chao, Deng Nan, Wang Lingling, Xu Dingjian, Yao Xiaoquan. Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1034-1043. doi: 10.6023/cjoc201512018 shu

Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes

  • Corresponding author: Yao Xiaoquan, yaoxq@nuaa.edu.cn
  • Received Date: 13 December 2015
    Revised Date: 15 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No.21172107

Figures(2)

  • A copper-silver nanoparticles-catalyzed addition of terminal alkynes to aldehydes was developed for the synthesis of propargyl alcohols. With the promotion of bipyridine ligand, the bimetallic catalyst showed highly efficient to the reaction under neat condition, and good to excellent yields were achieved for various propargylic alcohols. In this catalytic reaction, a remarkable bimetallic synergistic effect was observed, in which Ag NPs worked as the co-catalyst and improved the catalytic activity of Cu NPs significantly. The nanoparticle catalyst could be recovered and reused effectively, and no obvious reduction on catalytic activity was observed after four recycles. Furthermore, a gram-scale reaction was also carried out successfully.
  • 加载中
    1. [1]

       

    2. [2]

      For recent reviews, see: (a) Gao, G.; Moore, D.; Xie, R. G.; Pu, L. Org. Lett. 2002, 4, 4143. (b) Pu, L.; Yu, H. B. Chem. Rev. 2001, 101, 757. (c) Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373. (d) Srihari, P.; Singh, V. K.; Bhunia, D. C.; Yadav, J. S. Tertrahedron Lett. 2008, 49, 7132. (e) Zheng, B.; Li, Z. Y.; Liu, F. P.; Wu, Y. H.; Shen, J.-J.; Bian, Q. H.; Hou, S. C.; Wang. M. Molecules 2013, 18, 15422.

    3. [3]

      He, Q. W.; Ma. S. M. Chin. J. Org. Chem. 2002, 22, 375.

    4. [4]

      Usanov, D. L.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 1286. (b) Li, X. S.; Lu, G.; Kwok, W. H. J. Am. Chem. Soc. 2002, 124, 12636. (c) Xu, M. H.; Pu, L. Org. Lett. 2002, 4, 4555. (d) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855. (e) Li, Z. B.; Pu, L. Org. Lett. 2004, 6, 1065. (f) Xu, Z. Q.; Hen, C.; Xu, J. K.; Miao, M. B.; Yan, W. J.; Wang, R. Org. Lett. 2004, 6, 1193. (g) Liu, L.; Wang, R.; Chen, C.; Xu, Z. Q.; Zhou, Y. F.; Ni, M.; Kang, Y. F.; Cai, H. Q.; Gong, M. Z. J. Org. Chem. 2004, 4095. 

    5. [5]

      Some reviews and examples, see: (a) Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131. (b) Tzalis, D.; Knochel, P. Angew. Chem., In. Ed. 1999, 38, 1463. (c) Friedrich, K. In the Chemistry of Triple-boned Functional Groups, Supplement C, Eds.: Patai, S.; Rappoport, Z., John Wiley & Sons: New York, 1983, Chapter 28. (d) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes, Elsevier, Amsterdam, 1981. (e) Liu, J.; An, Y.; Wang, Y. H.; Jiang, H. Y.; Zhang, Y. X.; Chen, Z. L. Chem. Eur. J. 2008, 14, 9131. 

    6. [6]

      Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. J. Am. Chem. Soc. 2000, 8, 1806. (b) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605. (c) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687. (d) Li, M.; Zhu, X. Z.; Yuan, K.; Cao, B. X.; Hou, X. L. Tetrahedron: Asymmentry. 2004, 15, 219. (e) Xu, Z. Q.; Chen, C.; Xu, J. K.; Miao, M. B.; Yan, W. J.; Wang, R. Org. Lett. 2004, 6, 1193.

    7. [7]

      Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7, 1363. (b) Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13760.

    8. [8]

      Wei, C. M.; Li, C. J. Green Chem. 2002, 4, 39. 

    9. [9]

      Dhondi, P. K.; Chisholm, J. D. Org. Lett. 2006, 8, 67. 

    10. [10]

      Ito, J.; Asai, R.; Nishiyama, H. Org. Lett. 2010, 12, 3860.

    11. [11]

      Asano, Y.; Ito, H.; Hara, K.; Aswamur, M. Organometallics 2008, 27, 5984. (b) Asano, Y.; Hara, K.; Ito, H.; Aswamur, M. Org. Lett., 2007, 9, 3901.

    12. [12]

      Yao, X. Q.; Li, C. J. Org. Lett. 2005, 7, 4395. (b) Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.; Yao, X.; Li, C. J. J. Org. Chem. 2009, 74, 3378. 

    13. [13]

      Yao, X. Q.; Li, C. J. Org. Lett. 2006, 8, 1953. 

    14. [14]

      For selected reviews, see: (a) Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450. (b) Shaikhutdinov, S.; Freund, H.-J. Acc. Chem. Res. 2013, 46, 1673. (c) Hervés, P.; Pérez Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41, 5577. (d) Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262. (e) Shiju, N. R.; Guliants, V. V. Appl. Catal. A: Gen. 2009, 356, 1. (f) Somorjai, G. A.; Park, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9212. (g) Gu, Y.; Li, G. Adv. Synth. Catal. 2009, 351, 817. 

    15. [15]

    16. [16]

       

    17. [17]

       

    18. [18]

      Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5638. (b) Wei, C. M.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749. 

    19. [19]

      Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. J. Am. Chem. Soc. 2014, 136, 924. (b) Qi, X.; Li, Y.; Zhang, G.; Li, Y.; Lei, A.; Liu,; Lan, Y. Dalton Trans. 2015, 44, 11165. (c) Yuan, J.; Wang, J.; Zhang, G.; Liu, C.; Qi, X.; Lan, Y.; Miller, J. T.; Kropf, J.; Bunel, E. E.; Lei, A. Chem. Commun. 2015, 51, 576. (d) Tang, S.; Liu, Y.; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 15850. 

    20. [20]

      Singh, M.; Sinha, I.; Singh, A. K.; Mandal, R. K. Colloid Surf., A 2005, 384, 668.

    21. [21]

      Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Mater. Res. Bull. 2011, 46, 384. 

    22. [22]

      Tan, K. S.; Cheong, K. Y.; J. Nanopart. Res. 2013, 15, 1537. 

    23. [23]

      Li, Y. S.; Lu, Y. C.; Chou, K. S.; Liu, F. J. Mater. Res. Bull. 2010, 45, 1837. 

    24. [24]

      Grouchko, M.; Kamyshny, A.; Magdassi, S. J. Mater. Chem, 2009, 19, 3057. 

    25. [25]

      Butovsky, E.; Perelshtein, I.; Gedanken, A. J. Mater. Chem, 2012, 22, 15025. 

    26. [26]

      Kwok, H. N.; Penner, R. M. J. Electroanal. Chem. 2002, 522, 86. 

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    3. [3]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(0)
  • Abstract views(966)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return