Citation: Ye Junwei, Huang Xueming, Wang Xiaoxiao, Zheng Ting, Gao Yuan, Gong Weitao, Ning Guiling. Research Progress on the Synthesis and Application of Cyclopentadiene Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1299-1307. doi: 10.6023/cjoc201512012 shu

Research Progress on the Synthesis and Application of Cyclopentadiene Derivatives

  • Corresponding author: Ye Junwei, junweiye@dlut.edu.cn Ning Guiling, ninggl@dlut.edu.cn
  • Received Date: 9 December 2015
    Revised Date: 22 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 51003009, 20772014and the Fundamental Research Funds for the Central Universities of China No. DUT14LK32and the Science and Technology Research Foundation of Education Department of Liaoning Province No. L2014033

Figures(14)

  • Cyclopentadiene and its derivatives are a type of important small molecule cyclic olefin compounds, which have been widely applied in many fields such as synthesis of metallocene compounds, synthesis of organic intermediates and organic photoelectric materials. Based on our recent research results, in this review, the research progress on the synthesis of cyclopentadiene derivatives and the application of some typical cyclopentadiene derivatives in the field of organic synthesis are summarized.
  • 加载中
    1. [1]

      Tjahjono, A. M.; Feng, G.; Hermanto, M. W.; Cechao, F.; Garland, M. RSC Adv. 2014, 4, 22194. 

    2. [2]

      Feng, Y.-S.; Hao, J.; Liu, W.-W.; Yao, Y.-J.; Cheng, Y.; Xu, H.-J. Chin. Chem. Lett. 2015, 26, 709.

    3. [3]

      Hoops, M. D.; Ault, B. S. J. Am. Chem. Soc. 2009, 131, 2853. 

    4. [4]

      Levandowski, B. J.; Houk, K. N. J. Org. Chem. 2015, 80, 3530. 

    5. [5]

      Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem. Eur. J. 2007, 13, 9478. 

    6. [6]

      McGivern, W. S.; Manion, J. A.; Tsang, W. J. Phys. Chem. A 2006, 110, 12822. 

    7. [7]

      Yang, C.; Cho, S.; Chiechi, R. C.; Walker, W.; Coates, N. E.; Moses, D.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2008, 130, 16524. 

    8. [8]

      Suess-Fink, G. Dalton Trans. 2010, 39, 1673.

    9. [9]

      Kim, H.; Choi, T.; Cha, M. C.; Chang, J. Y. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646. 

    10. [10]

      Rettenmeier, E.; Schuster, A. M.; Rudolph, M.; Rominger, F.; Gade, C. A.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 5880. 

    11. [11]

      Geng, W. Z.; Wang, C.; Guang, J.; Hao, W.; Zhang, W.-X.; Xi, Z. F. Chem. Eur. J. 2013, 19, 8657. 

    12. [12]

      Wirtanen, T.; Muuronen, M.; Melchionna, M.; Patzschke, M.; Helaja, J. J. Org. Chem. 2014, 79, 10269. 

    13. [13]

      Fang, Z. X.; Liu, J. Q.; Liu, Q.; Bi, X. H. Angew. Chem. Int. Ed. 2014, 53, 7209. 

    14. [14]

      Yang, L. J.; Ye, J. W.; Xu, L. F.; Yang, X. Y.; Gong, W. T.; Lin, Y.; Ning, G. L. RSC Adv. 2012, 2, 11529. 

    15. [15]

      Zhang, X. D.; Ye, J. W.; Xu, L. F.; Yang, L. J.; Deng, D.; Ning, G. L. J. Lumin. 2013, 139, 28. 

    16. [16]

      Ye, J. W.; Deng, D.; Gao, Y.; Wang, X. X.; Yang, L. J.; Lin, Y.; Ning, G. L. Spectrochim. Acta, Part A 2015, 134, 22. 

    17. [17]

      Ye, J.W.; Gao, Y.; He, L.; Tan, T. T.; Chen, W.; Liu, Y.; Wang, Y.; Ning, G. L. Dyes Pigm. 2016, 124, 145. 

    18. [18]

      Ye, J. W.; Xu, L. F.; Gao, Y.; Wang, H.; Ding, Y. Z.; Deng, D.; Gong, W. T.; Ning, G. L. Synth. Met. 2013, 175, 170. 

    19. [19]

      Ning, G. L.; Li, X. C.; Munakata, M.; Gong, W. T.; Maekawa, M.; Kamikawa, T. J. Org. Chem. 2004, 69, 1432. 

    20. [20]

      Gong, W. T.; Ning, G. L.; Li, X. C.; Wang, L.; Lin, Y. J. Org. Chem. 2005, 70, 5768. 

    21. [21]

      Yang, L. J.; Ye, J. W.; Gao, Y.; Deng,D.; Gong, W. T.; Li, Y.; Ning, G. L.; Tetrahedron Lett. 2013, 54, 2967. 

    22. [22]

      Ye, J. W.; Zhang, X. D.; Deng, D.; Ning, G. L.; Liu, T. Q.; Zhuang, M. L.; Yang, L. J.; Gong, W. T.; Lin, Y. RSC Adv. 2013, 3, 8232. 

    23. [23]

      Zhang, X. D.; Ye, J. W.; Wang, S. N.; Gong, W. T.; Lin, Y.; Ning, G. L. Org. Lett. 2011, 13, 3608. 

    24. [24]

      Yang, L. J.; Ye, J. W.; Gao, Y.; Deng, D.; Lin, Y.; Ning, G. L. Eur. J. Org. Chem. 2014, 515

    25. [25]

    26. [26]

       

    27. [27]

      Li, G.; Gong, W.-T.; Ye, J.-W.; Lin, Y.; Ning, G.-L. Synth. Commun. 2012, 42, 480.

    28. [28]

       

    29. [29]

      Peng, S. Y.; Gao, T.; Sun, S. F.; Peng, Y. H.; Wu, M. H.; Guo, H. B.; Wang, J. Adv. Synth. Catal. 2014, 356, 319. 

    30. [30]

      Dömling, A. Chem. Rev. 2006, 106, 17.

    31. [31]

      Chen, L.; Mahmoud, S. M.; Yin, X. D.; Lalancette, R. A.; Pietrangelo A. J. Am. Chem. Soc. 2013, 15, 5970.

    32. [32]

      Loh, C. C. J.; Enders, D. Chem. Eur. J. 2012, 18, 10212. 

    33. [33]

      Becker, L.; Burlakov, V. V.; Arndt, P.; Spannenberg, A.; Baumann, W.; Jiao, H. J.; Rosenthal, U. Chem. Eur. J. 2013, 19, 4230. 

    34. [34]

      Kryukov, S. I.; Dzyuba, I. V.; Smirnov, V. A. Neftekhimiya 1991, 31, 386.

    35. [35]

      Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005,127, 9298. 

    36. [36]

    37. [37]

      Li, L.; Cai, Z.; Shen, B.; Xin, Z.; Ling, H. Chem. Eng. Technol. 2011, 34, 1468. 

    38. [38]

      Khambata, B. S.; Wassermann, A. J. Chem. Soc. 1939, 375.

    39. [39]

      Krupka, J. Pet. Coal. 2010, 52, 290.

    40. [40]

      Goswami, T.; Das, D. K.; Goswami, D. Chem. Phys. Lett. 2013, 558, 1.

    41. [41]

      Herndon, W. C.; Grayson, C. R.; Manion, J. M. J. Org. Chem. 1967, 32, 526. 

    42. [42]

      Wang, W.; Chen, J.-G.; Song, L.-P.; Liu, Z.-T.; Liu, Z.-W.; Lu, J.; Xiao, J. L.; Hao, Z. P. Energy Fuels 2013, 27, 6339. 

    43. [43]

      Wang, W. T.; Cong, Y.; Chen, S.; Sun, C. X.; Wang, X. D.; Zhang, T. Top. Catal. 2015, 58, 350.

    44. [44]

      Mendez, I. D.; Klimova, E.; Klimova, T.; Hernández, O. S.; Martínez, G. M. J. Organomet. Chem. 2003, 681, 115. 

    45. [45]

      Kollenz, G.; Ebner, S. Sci. Synth. 2006, 23, 271.

    46. [46]

      Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H.-H.; Barney Ellison, G. J. Chem. Phys. 2012, 136, 044309.

    47. [47]

      Koch, R.; Blanch, R. J.; Wentrup, C. J. Org. Chem. 2014, 79, 6978. 

    48. [48]

      Siemeling, U.; Neumann, B.; Stammler, H.-G.; Salmon, A. Z. Anorg. Allg. Chem. 2002, 628, 2315. 

    49. [49]

      Morris, D. M.; McGeagh, M.; De Peña, D.; Merola, J. S. Polyhedron 2014, 84, 120. 

    50. [50]

      Pal, R.; Mukherjee, S.; Chandrasekhar, S.; Guru Row, T. N. J. Phys. Chem. A 2014, 118, 3479.

    51. [51]

      Kaleta, K.; Strehler, F.; Hildebrandt, A.; Beweries, T.; Arndt, P.; Rüffer, T.; Spannenberg, A.; Lang, H.; Rosenthal, U. Chem. Eur. J. 2012, 18, 12672. 

    52. [52]

      Mehdi, G.; Ali-Tabatabaei, G.; Maciej, K. J. Org. Chem. 2013, 78, 2611. 

    53. [53]

    54. [54]

      Wu, X. J.; Zeng, X. C. J. Am. Chem. Soc. 2009, 131, 14246. 

    55. [55]

      Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. 1956, 3(2), 104. 

    56. [56]

      Jiang, X. J.; Chen, L. M.; Wang, X.; Long, L.; Xiao, Z. Y.; Liu, X. M. Chem. Eur. J. 2015, 21, 13065. 

    57. [57]

      Loughrey, B. T.; Williams, M. L.; Carruthers, T. J.; Parsons, P. G.; Healy, P. C. Aust. J. Chem. 2010, 63, 245. 

    58. [58]

      Micallef, L. S.; Loughrey, B. T.; Healy, P. C.; Parsons, P. G.; Williams, M. L. Organometallics 2011, 30, 1395. 

    59. [59]

      Schaarschmidt, D.; Lang, H. Organometallics 2013, 32, 5668.

    60. [60]

      Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 2010, 132, 2136. 

    61. [61]

      Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.

    62. [62]

      Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1997, 36, 2456. 

    63. [63]

      Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.

    64. [64]

      Pi, C.; Li, Y.; Cui, X. L.; Zhang, H.; Han, Y. B.; Wu, Y. J. Chem. Sci. 2013, 4, 2675. 

    65. [65]

      Pi, C.; Cui, X. L.; Liu, X. Y.; Guo, M. X.; Zhang, H. Y.; Wu, Y. J. Org. Lett. 2014, 16, 5164. 

    66. [66]

      Plate, A. F.; Stanko, V. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1956, 5, 1173. 

    67. [67]

      Athawale, V. D.; Rathi, S. C. J. Appl. Polym. Sci. 1997, 66 , 1399. 

    68. [68]

      Fernando, C.-L.; Santiago, G.-Q.; Claudia, A.; Keane, M. A. Appl. Catal. A 2014, 473, 41. 

    69. [69]

      Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. J. Am. Chem. Soc. 2013, 135,14313. 

    70. [70]

      Samoshin, A. V.; Hawker, C. J.; Read de Alaniz, J. ACS Macro. Lett. 2014, 3, 753.

    71. [71]

      Bian, S.; Scott, A. M.; Cao, Y.; Liang, Y.; Osuna, S.; Houk, K. N.; Braunschweig, A. B. J. Am. Chem. Soc. 2013, 135, 9240. 

    72. [72]

      Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. 

    73. [73]

      Gotoh, H.; Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2015, 21, 12337. 

    74. [74]

      Liu, J. H.; Lei, M.; Hu, L. H. Green Chem. 2012, 14, 2534. 

    75. [75]

      Jorner, K.; Emanuelsson, R.; Dahlstrand, C.; Tong, H.; Denisova, A. V.; Ottosson, H. Chem. Eur. J. 2014, 20, 9295. 

    76. [76]

      Sha, L.; Li, L.; Yuan, F. G. Chin. J. Chem. 2014, 32, 1214. 

    77. [77]

      Finke, A. D.; Diederich, F. Chem. Rec. 2015, 15, 19.

    78. [78]

      Dahlstrand, C.; Rosenberg, M.; Kilså, K.; Ottosson, H. J. Phys. Chem. A 2012, 116, 5008. 

    79. [79]

      Alonso, M.; Herradón, B. Phys. Chem. Chem. Phys. 2010, 12, 1305. 

    80. [80]

      Müller, T. Angew. Chem., Int. Ed. 2002, 41, 2276. 

    81. [81]

      Xu, S. T.; Zheng, A.; Wei, Y. X.; Chen, J. R.; Li, J. Z.; Chu, Y. Y.; Zhang, M. Z.; Wang, Q. Y.; Zhou, Y.; Wang, J. B.; Deng, F.; Liu, Z. M. Angew. Chem., Int. Ed. 2013, 52, 11564. 

    82. [82]

      Nikolov, P.; Metzov, S. J. Photochem. Photobiol. A: Chem. 2000, 135, 13. 

    83. [83]

      Bello, A. M.; Kotra, L. P. Tetrahedron Lett. 2003, 44, 9271. 

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    7. [7]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    8. [8]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    11. [11]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

Metrics
  • PDF Downloads(0)
  • Abstract views(5084)
  • HTML views(1601)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return